Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 17-Oct-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mpsyl4anc.1 |  | 
					
						|  |  | mpsyl4anc.2 |  | 
					
						|  |  | mpsyl4anc.3 |  | 
					
						|  |  | mpsyl4anc.4 |  | 
					
						|  |  | mpsyl4anc.5 |  | 
				
					|  | Assertion | mpsyl4anc |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpsyl4anc.1 |  | 
						
							| 2 |  | mpsyl4anc.2 |  | 
						
							| 3 |  | mpsyl4anc.3 |  | 
						
							| 4 |  | mpsyl4anc.4 |  | 
						
							| 5 |  | mpsyl4anc.5 |  | 
						
							| 6 | 1 | a1i |  | 
						
							| 7 | 2 | a1i |  | 
						
							| 8 | 3 | a1i |  | 
						
							| 9 | 6 7 8 4 5 | syl1111anc |  |