Metamath Proof Explorer


Theorem mpteq2daOLD

Description: Obsolete version of mpteq2da as of 11-Nov-2024. (Contributed by FL, 14-Sep-2013) (Revised by Mario Carneiro, 16-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq2da.1 x φ
mpteq2da.2 φ x A B = C
Assertion mpteq2daOLD φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2da.1 x φ
2 mpteq2da.2 φ x A B = C
3 eqid A = A
4 3 ax-gen x A = A
5 2 ex φ x A B = C
6 1 5 ralrimi φ x A B = C
7 mpteq12f x A = A x A B = C x A B = x A C
8 4 6 7 sylancr φ x A B = x A C