Metamath Proof Explorer


Theorem mptfng

Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011)

Ref Expression
Hypothesis mptfng.1 F=xAB
Assertion mptfng xABVFFnA

Proof

Step Hyp Ref Expression
1 mptfng.1 F=xAB
2 eueq BV∃!yy=B
3 2 ralbii xABVxA∃!yy=B
4 df-mpt xAB=xy|xAy=B
5 1 4 eqtri F=xy|xAy=B
6 5 fnopabg xA∃!yy=BFFnA
7 3 6 bitri xABVFFnA