Metamath Proof Explorer


Theorem mscl

Description: Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion mscl MMetSpAXBXADB

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 ovres AXBXADX×XB=ADB
4 3 3adant1 MMetSpAXBXADX×XB=ADB
5 1 2 msmet2 MMetSpDX×XMetX
6 metcl DX×XMetXAXBXADX×XB
7 5 6 syl3an1 MMetSpAXBXADX×XB
8 4 7 eqeltrrd MMetSpAXBXADB