Metamath Proof Explorer


Theorem mspropd

Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses xmspropd.1 φ B = Base K
xmspropd.2 φ B = Base L
xmspropd.3 φ dist K B × B = dist L B × B
xmspropd.4 φ TopOpen K = TopOpen L
Assertion mspropd φ K MetSp L MetSp

Proof

Step Hyp Ref Expression
1 xmspropd.1 φ B = Base K
2 xmspropd.2 φ B = Base L
3 xmspropd.3 φ dist K B × B = dist L B × B
4 xmspropd.4 φ TopOpen K = TopOpen L
5 1 2 3 4 xmspropd φ K ∞MetSp L ∞MetSp
6 1 sqxpeqd φ B × B = Base K × Base K
7 6 reseq2d φ dist K B × B = dist K Base K × Base K
8 3 7 eqtr3d φ dist L B × B = dist K Base K × Base K
9 2 sqxpeqd φ B × B = Base L × Base L
10 9 reseq2d φ dist L B × B = dist L Base L × Base L
11 8 10 eqtr3d φ dist K Base K × Base K = dist L Base L × Base L
12 1 2 eqtr3d φ Base K = Base L
13 12 fveq2d φ Met Base K = Met Base L
14 11 13 eleq12d φ dist K Base K × Base K Met Base K dist L Base L × Base L Met Base L
15 5 14 anbi12d φ K ∞MetSp dist K Base K × Base K Met Base K L ∞MetSp dist L Base L × Base L Met Base L
16 eqid TopOpen K = TopOpen K
17 eqid Base K = Base K
18 eqid dist K Base K × Base K = dist K Base K × Base K
19 16 17 18 isms K MetSp K ∞MetSp dist K Base K × Base K Met Base K
20 eqid TopOpen L = TopOpen L
21 eqid Base L = Base L
22 eqid dist L Base L × Base L = dist L Base L × Base L
23 20 21 22 isms L MetSp L ∞MetSp dist L Base L × Base L Met Base L
24 15 19 23 3bitr4g φ K MetSp L MetSp