Metamath Proof Explorer


Theorem mspropd

Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses xmspropd.1 φB=BaseK
xmspropd.2 φB=BaseL
xmspropd.3 φdistKB×B=distLB×B
xmspropd.4 φTopOpenK=TopOpenL
Assertion mspropd φKMetSpLMetSp

Proof

Step Hyp Ref Expression
1 xmspropd.1 φB=BaseK
2 xmspropd.2 φB=BaseL
3 xmspropd.3 φdistKB×B=distLB×B
4 xmspropd.4 φTopOpenK=TopOpenL
5 1 2 3 4 xmspropd φK∞MetSpL∞MetSp
6 1 sqxpeqd φB×B=BaseK×BaseK
7 6 reseq2d φdistKB×B=distKBaseK×BaseK
8 3 7 eqtr3d φdistLB×B=distKBaseK×BaseK
9 2 sqxpeqd φB×B=BaseL×BaseL
10 9 reseq2d φdistLB×B=distLBaseL×BaseL
11 8 10 eqtr3d φdistKBaseK×BaseK=distLBaseL×BaseL
12 1 2 eqtr3d φBaseK=BaseL
13 12 fveq2d φMetBaseK=MetBaseL
14 11 13 eleq12d φdistKBaseK×BaseKMetBaseKdistLBaseL×BaseLMetBaseL
15 5 14 anbi12d φK∞MetSpdistKBaseK×BaseKMetBaseKL∞MetSpdistLBaseL×BaseLMetBaseL
16 eqid TopOpenK=TopOpenK
17 eqid BaseK=BaseK
18 eqid distKBaseK×BaseK=distKBaseK×BaseK
19 16 17 18 isms KMetSpK∞MetSpdistKBaseK×BaseKMetBaseK
20 eqid TopOpenL=TopOpenL
21 eqid BaseL=BaseL
22 eqid distLBaseL×BaseL=distLBaseL×BaseL
23 20 21 22 isms LMetSpL∞MetSpdistLBaseL×BaseLMetBaseL
24 15 19 23 3bitr4g φKMetSpLMetSp