Metamath Proof Explorer


Theorem xmspropd

Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses xmspropd.1 φB=BaseK
xmspropd.2 φB=BaseL
xmspropd.3 φdistKB×B=distLB×B
xmspropd.4 φTopOpenK=TopOpenL
Assertion xmspropd φK∞MetSpL∞MetSp

Proof

Step Hyp Ref Expression
1 xmspropd.1 φB=BaseK
2 xmspropd.2 φB=BaseL
3 xmspropd.3 φdistKB×B=distLB×B
4 xmspropd.4 φTopOpenK=TopOpenL
5 1 2 eqtr3d φBaseK=BaseL
6 5 4 tpspropd φKTopSpLTopSp
7 1 sqxpeqd φB×B=BaseK×BaseK
8 7 reseq2d φdistKB×B=distKBaseK×BaseK
9 3 8 eqtr3d φdistLB×B=distKBaseK×BaseK
10 2 sqxpeqd φB×B=BaseL×BaseL
11 10 reseq2d φdistLB×B=distLBaseL×BaseL
12 9 11 eqtr3d φdistKBaseK×BaseK=distLBaseL×BaseL
13 12 fveq2d φMetOpendistKBaseK×BaseK=MetOpendistLBaseL×BaseL
14 4 13 eqeq12d φTopOpenK=MetOpendistKBaseK×BaseKTopOpenL=MetOpendistLBaseL×BaseL
15 6 14 anbi12d φKTopSpTopOpenK=MetOpendistKBaseK×BaseKLTopSpTopOpenL=MetOpendistLBaseL×BaseL
16 eqid TopOpenK=TopOpenK
17 eqid BaseK=BaseK
18 eqid distKBaseK×BaseK=distKBaseK×BaseK
19 16 17 18 isxms K∞MetSpKTopSpTopOpenK=MetOpendistKBaseK×BaseK
20 eqid TopOpenL=TopOpenL
21 eqid BaseL=BaseL
22 eqid distLBaseL×BaseL=distLBaseL×BaseL
23 20 21 22 isxms L∞MetSpLTopSpTopOpenL=MetOpendistLBaseL×BaseL
24 15 19 23 3bitr4g φK∞MetSpL∞MetSp