Step |
Hyp |
Ref |
Expression |
1 |
|
xmspropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
xmspropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
xmspropd.3 |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
4 |
|
xmspropd.4 |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
5 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
6 |
5 4
|
tpspropd |
⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |
7 |
1
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
8 |
7
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
9 |
3 8
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
10 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
11 |
10
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
12 |
9 11
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
14 |
4 13
|
eqeq12d |
⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
15 |
6 14
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ TopSp ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐿 ∈ TopSp ∧ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
16 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
19 |
16 17 18
|
isxms |
⊢ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐾 ∈ TopSp ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
20 |
|
eqid |
⊢ ( TopOpen ‘ 𝐿 ) = ( TopOpen ‘ 𝐿 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
22 |
|
eqid |
⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
23 |
20 21 22
|
isxms |
⊢ ( 𝐿 ∈ ∞MetSp ↔ ( 𝐿 ∈ TopSp ∧ ( TopOpen ‘ 𝐿 ) = ( MetOpen ‘ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
24 |
15 19 23
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp ) ) |