Metamath Proof Explorer


Theorem mul2lt0rgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φA
mul2lt0.2 φB
mul2lt0.3 φAB<0
Assertion mul2lt0rgt0 φ0<BA<0

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φA
2 mul2lt0.2 φB
3 mul2lt0.3 φAB<0
4 3 adantr φ0<BAB<0
5 2 adantr φ0<BB
6 5 recnd φ0<BB
7 6 mul02d φ0<B0B=0
8 4 7 breqtrrd φ0<BAB<0B
9 1 adantr φ0<BA
10 0red φ0<B0
11 simpr φ0<B0<B
12 5 11 elrpd φ0<BB+
13 9 10 12 ltmul1d φ0<BA<0AB<0B
14 8 13 mpbird φ0<BA<0