Metamath Proof Explorer


Theorem mulcnsr

Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcnsr A𝑹B𝑹C𝑹D𝑹ABCD=A𝑹C+𝑹-1𝑹𝑹B𝑹DB𝑹C+𝑹A𝑹D

Proof

Step Hyp Ref Expression
1 opex A𝑹C+𝑹-1𝑹𝑹B𝑹DB𝑹C+𝑹A𝑹DV
2 oveq1 w=Aw𝑹u=A𝑹u
3 oveq1 v=Bv𝑹f=B𝑹f
4 3 oveq2d v=B-1𝑹𝑹v𝑹f=-1𝑹𝑹B𝑹f
5 2 4 oveqan12d w=Av=Bw𝑹u+𝑹-1𝑹𝑹v𝑹f=A𝑹u+𝑹-1𝑹𝑹B𝑹f
6 oveq1 v=Bv𝑹u=B𝑹u
7 oveq1 w=Aw𝑹f=A𝑹f
8 6 7 oveqan12rd w=Av=Bv𝑹u+𝑹w𝑹f=B𝑹u+𝑹A𝑹f
9 5 8 opeq12d w=Av=Bw𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f=A𝑹u+𝑹-1𝑹𝑹B𝑹fB𝑹u+𝑹A𝑹f
10 oveq2 u=CA𝑹u=A𝑹C
11 oveq2 f=DB𝑹f=B𝑹D
12 11 oveq2d f=D-1𝑹𝑹B𝑹f=-1𝑹𝑹B𝑹D
13 10 12 oveqan12d u=Cf=DA𝑹u+𝑹-1𝑹𝑹B𝑹f=A𝑹C+𝑹-1𝑹𝑹B𝑹D
14 oveq2 u=CB𝑹u=B𝑹C
15 oveq2 f=DA𝑹f=A𝑹D
16 14 15 oveqan12d u=Cf=DB𝑹u+𝑹A𝑹f=B𝑹C+𝑹A𝑹D
17 13 16 opeq12d u=Cf=DA𝑹u+𝑹-1𝑹𝑹B𝑹fB𝑹u+𝑹A𝑹f=A𝑹C+𝑹-1𝑹𝑹B𝑹DB𝑹C+𝑹A𝑹D
18 9 17 sylan9eq w=Av=Bu=Cf=Dw𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f=A𝑹C+𝑹-1𝑹𝑹B𝑹DB𝑹C+𝑹A𝑹D
19 df-mul ×=xyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
20 df-c =𝑹×𝑹
21 20 eleq2i xx𝑹×𝑹
22 20 eleq2i yy𝑹×𝑹
23 21 22 anbi12i xyx𝑹×𝑹y𝑹×𝑹
24 23 anbi1i xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fx𝑹×𝑹y𝑹×𝑹wvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
25 24 oprabbii xyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f=xyz|x𝑹×𝑹y𝑹×𝑹wvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
26 19 25 eqtri ×=xyz|x𝑹×𝑹y𝑹×𝑹wvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
27 1 18 26 ov3 A𝑹B𝑹C𝑹D𝑹ABCD=A𝑹C+𝑹-1𝑹𝑹B𝑹DB𝑹C+𝑹A𝑹D