Metamath Proof Explorer


Theorem muldmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl2.1 _xF
muldmmbl2.2 _xG
muldmmbl2.3 φSSAlg
muldmmbl2.4 φdomFS
muldmmbl2.5 φdomGS
muldmmbl2.6 H=xdomFdomGFxGx
Assertion muldmmbl2 φdomHS

Proof

Step Hyp Ref Expression
1 muldmmbl2.1 _xF
2 muldmmbl2.2 _xG
3 muldmmbl2.3 φSSAlg
4 muldmmbl2.4 φdomFS
5 muldmmbl2.5 φdomGS
6 muldmmbl2.6 H=xdomFdomGFxGx
7 1 nfdm _xdomF
8 2 nfdm _xdomG
9 7 8 nfin _xdomFdomG
10 ovex FxGxV
11 9 10 6 dmmptif domH=domFdomG
12 11 a1i φdomH=domFdomG
13 3 4 5 salincld φdomFdomGS
14 12 13 eqeltrd φdomHS