Metamath Proof Explorer


Theorem muldvds1d

Description: If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses muldvds1d.1 φK
muldvds1d.2 φM
muldvds1d.3 φN
muldvds1d.4 φK MN
Assertion muldvds1d φKN

Proof

Step Hyp Ref Expression
1 muldvds1d.1 φK
2 muldvds1d.2 φM
3 muldvds1d.3 φN
4 muldvds1d.4 φK MN
5 1 2 3 3jca φKMN
6 muldvds1 KMNK MNKN
7 5 6 syl φK MNKN
8 4 7 mpd φKN