Metamath Proof Explorer


Theorem mulgfvi

Description: The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis mulgfvi.t ·˙=G
Assertion mulgfvi ·˙=IG

Proof

Step Hyp Ref Expression
1 mulgfvi.t ·˙=G
2 fvi GVIG=G
3 2 eqcomd GVG=IG
4 3 fveq2d GVG=IG
5 fvprc ¬GVG=
6 fvprc ¬GVIG=
7 6 fveq2d ¬GVIG=
8 base0 =Base
9 eqid =
10 8 9 mulgfn Fn×
11 xp0 ×=
12 11 fneq2i Fn×Fn
13 10 12 mpbi Fn
14 fn0 Fn=
15 13 14 mpbi =
16 7 15 eqtrdi ¬GVIG=
17 5 16 eqtr4d ¬GVG=IG
18 4 17 pm2.61i G=IG
19 1 18 eqtri ·˙=IG