| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsproplem.1 |
|
| 2 |
|
mulsproplem4.1 |
|
| 3 |
|
mulsproplem4.2 |
|
| 4 |
|
oldssno |
|
| 5 |
4 2
|
sselid |
|
| 6 |
|
oldssno |
|
| 7 |
6 3
|
sselid |
|
| 8 |
|
0sno |
|
| 9 |
8
|
a1i |
|
| 10 |
|
bday0s |
|
| 11 |
10 10
|
oveq12i |
|
| 12 |
|
0elon |
|
| 13 |
|
naddrid |
|
| 14 |
12 13
|
ax-mp |
|
| 15 |
11 14
|
eqtri |
|
| 16 |
15 15
|
uneq12i |
|
| 17 |
|
un0 |
|
| 18 |
16 17
|
eqtri |
|
| 19 |
18 18
|
uneq12i |
|
| 20 |
19 17
|
eqtri |
|
| 21 |
20
|
uneq2i |
|
| 22 |
|
un0 |
|
| 23 |
21 22
|
eqtri |
|
| 24 |
|
oldbdayim |
|
| 25 |
2 24
|
syl |
|
| 26 |
|
oldbdayim |
|
| 27 |
3 26
|
syl |
|
| 28 |
|
bdayelon |
|
| 29 |
|
bdayelon |
|
| 30 |
|
naddel12 |
|
| 31 |
28 29 30
|
mp2an |
|
| 32 |
25 27 31
|
syl2anc |
|
| 33 |
|
elun1 |
|
| 34 |
32 33
|
syl |
|
| 35 |
23 34
|
eqeltrid |
|
| 36 |
1 5 7 9 9 9 9 35
|
mulsproplem1 |
|
| 37 |
36
|
simpld |
|