Metamath Proof Explorer


Theorem mulvfv

Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfv AEBDCAvBC=ABC

Proof

Step Hyp Ref Expression
1 mulvval AEBDAvB=xABx
2 1 fveq1d AEBDAvBC=xABxC
3 fveq2 x=CBx=BC
4 3 oveq2d x=CABx=ABC
5 eqid xABx=xABx
6 ovex ABCV
7 4 5 6 fvmpt CxABxC=ABC
8 2 7 sylan9eq AEBDCAvBC=ABC
9 8 3impa AEBDCAvBC=ABC