Metamath Proof Explorer


Theorem mvhval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v V=mVRT
mvhfval.y Y=mTypeT
mvhfval.h H=mVHT
Assertion mvhval XVHX=YX⟨“X”⟩

Proof

Step Hyp Ref Expression
1 mvhfval.v V=mVRT
2 mvhfval.y Y=mTypeT
3 mvhfval.h H=mVHT
4 fveq2 v=XYv=YX
5 s1eq v=X⟨“v”⟩=⟨“X”⟩
6 4 5 opeq12d v=XYv⟨“v”⟩=YX⟨“X”⟩
7 1 2 3 mvhfval H=vVYv⟨“v”⟩
8 opex YX⟨“X”⟩V
9 6 7 8 fvmpt XVHX=YX⟨“X”⟩