Metamath Proof Explorer


Theorem mvlladdd

Description: Move the left term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlraddd.1 φA
mvlraddd.2 φB
mvlraddd.3 φA+B=C
Assertion mvlladdd φB=CA

Proof

Step Hyp Ref Expression
1 mvlraddd.1 φA
2 mvlraddd.2 φB
3 mvlraddd.3 φA+B=C
4 2 1 pncand φB+A-A=B
5 1 2 addcomd φA+B=B+A
6 5 3 eqtr3d φB+A=C
7 6 oveq1d φB+A-A=CA
8 4 7 eqtr3d φB=CA