Metamath Proof Explorer


Theorem mvllmuld

Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvllmuld.1 φA
mvllmuld.2 φB
mvllmuld.3 φA0
mvllmuld.4 φAB=C
Assertion mvllmuld φB=CA

Proof

Step Hyp Ref Expression
1 mvllmuld.1 φA
2 mvllmuld.2 φB
3 mvllmuld.3 φA0
4 mvllmuld.4 φAB=C
5 2 1 3 divcan4d φBAA=B
6 1 2 mulcomd φAB=BA
7 6 4 eqtr3d φBA=C
8 7 oveq1d φBAA=CA
9 5 8 eqtr3d φB=CA