Metamath Proof Explorer


Theorem mvrraddd

Description: Move the right term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvrraddd.1 φB
mvrraddd.2 φC
mvrraddd.3 φA=B+C
Assertion mvrraddd φAC=B

Proof

Step Hyp Ref Expression
1 mvrraddd.1 φB
2 mvrraddd.2 φC
3 mvrraddd.3 φA=B+C
4 3 oveq1d φAC=B+C-C
5 1 2 pncand φB+C-C=B
6 4 5 eqtrd φAC=B