Metamath Proof Explorer


Theorem mxidlnzr

Description: A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B=BaseR
Assertion mxidlnzr Could not format assertion : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlval.1 B=BaseR
2 1 mxidlidl Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
3 eqid LIdealR=LIdealR
4 eqid 0R=0R
5 3 4 lidl0cl RRingMLIdealR0RM
6 2 5 syldan Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) e. M ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) e. M ) with typecode |-
7 eqid 1R=1R
8 1 7 mxidln1 Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. ( 1r ` R ) e. M ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. ( 1r ` R ) e. M ) with typecode |-
9 nelne2 0RM¬1RM0R1R
10 6 8 9 syl2anc Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) =/= ( 1r ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) =/= ( 1r ` R ) ) with typecode |-
11 10 necomd Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) with typecode |-
12 7 4 isnzr RNzRingRRing1R0R
13 12 biimpri RRing1R0RRNzRing
14 11 13 syldan Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) with typecode |-