Metamath Proof Explorer


Theorem mxidlnzr

Description: A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion mxidlnzr Could not format assertion : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 1 mxidlidl Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
3 eqid LIdeal R = LIdeal R
4 eqid 0 R = 0 R
5 3 4 lidl0cl R Ring M LIdeal R 0 R M
6 2 5 syldan Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) e. M ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) e. M ) with typecode |-
7 eqid 1 R = 1 R
8 1 7 mxidln1 Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. ( 1r ` R ) e. M ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. ( 1r ` R ) e. M ) with typecode |-
9 nelne2 0 R M ¬ 1 R M 0 R 1 R
10 6 8 9 syl2anc Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) =/= ( 1r ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 0g ` R ) =/= ( 1r ` R ) ) with typecode |-
11 10 necomd Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) with typecode |-
12 7 4 isnzr R NzRing R Ring 1 R 0 R
13 12 biimpri R Ring 1 R 0 R R NzRing
14 11 13 syldan Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) with typecode |-