Metamath Proof Explorer


Theorem n0eldmqseq

Description: The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018)

Ref Expression
Assertion n0eldmqseq domR/R=A¬A

Proof

Step Hyp Ref Expression
1 n0eldmqs ¬domR/R
2 eleq2 domR/R=AdomR/RA
3 1 2 mtbii domR/R=A¬A