Metamath Proof Explorer


Theorem n0lplig

Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021) (Proof shortened by BJ, 2-Dec-2021)

Ref Expression
Assertion n0lplig G Plig ¬ G

Proof

Step Hyp Ref Expression
1 nsnlplig G Plig ¬ V G
2 vprc ¬ V V
3 snprc ¬ V V V =
4 2 3 mpbi V =
5 4 eqcomi = V
6 5 eleq1i G V G
7 1 6 sylnibr G Plig ¬ G