Metamath Proof Explorer


Theorem n0lplig

Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021) (Proof shortened by BJ, 2-Dec-2021)

Ref Expression
Assertion n0lplig ( 𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 nsnlplig ( 𝐺 ∈ Plig → ¬ { V } ∈ 𝐺 )
2 vprc ¬ V ∈ V
3 snprc ( ¬ V ∈ V ↔ { V } = ∅ )
4 2 3 mpbi { V } = ∅
5 4 eqcomi ∅ = { V }
6 5 eleq1i ( ∅ ∈ 𝐺 ↔ { V } ∈ 𝐺 )
7 1 6 sylnibr ( 𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺 )