Metamath Proof Explorer
		
		
		
		Description:  There is no "empty line" in a planar incidence geometry.  (Contributed by AV, 28-Nov-2021)  (Proof shortened by BJ, 2-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | n0lplig | ⊢  ( 𝐺  ∈  Plig  →  ¬  ∅  ∈  𝐺 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsnlplig | ⊢ ( 𝐺  ∈  Plig  →  ¬  { V }  ∈  𝐺 ) | 
						
							| 2 |  | vprc | ⊢ ¬  V  ∈  V | 
						
							| 3 |  | snprc | ⊢ ( ¬  V  ∈  V  ↔  { V }  =  ∅ ) | 
						
							| 4 | 2 3 | mpbi | ⊢ { V }  =  ∅ | 
						
							| 5 | 4 | eqcomi | ⊢ ∅  =  { V } | 
						
							| 6 | 5 | eleq1i | ⊢ ( ∅  ∈  𝐺  ↔  { V }  ∈  𝐺 ) | 
						
							| 7 | 1 6 | sylnibr | ⊢ ( 𝐺  ∈  Plig  →  ¬  ∅  ∈  𝐺 ) |