Metamath Proof Explorer
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021) (Proof shortened by BJ, 2-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
n0lplig |
⊢ ( 𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nsnlplig |
⊢ ( 𝐺 ∈ Plig → ¬ { V } ∈ 𝐺 ) |
2 |
|
vprc |
⊢ ¬ V ∈ V |
3 |
|
snprc |
⊢ ( ¬ V ∈ V ↔ { V } = ∅ ) |
4 |
2 3
|
mpbi |
⊢ { V } = ∅ |
5 |
4
|
eqcomi |
⊢ ∅ = { V } |
6 |
5
|
eleq1i |
⊢ ( ∅ ∈ 𝐺 ↔ { V } ∈ 𝐺 ) |
7 |
1 6
|
sylnibr |
⊢ ( 𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺 ) |