| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  𝐺  =  ∪  𝐺 | 
						
							| 2 | 1 | l2p | ⊢ ( ( 𝐺  ∈  Plig  ∧  ∅  ∈  𝐺 )  →  ∃ 𝑎  ∈  ∪  𝐺 ∃ 𝑏  ∈  ∪  𝐺 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  ∅  ∧  𝑏  ∈  ∅ ) ) | 
						
							| 3 |  | noel | ⊢ ¬  𝑎  ∈  ∅ | 
						
							| 4 | 3 | pm2.21i | ⊢ ( 𝑎  ∈  ∅  →  ∅  ∉  𝐺 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  ∅  ∧  𝑏  ∈  ∅ )  →  ∅  ∉  𝐺 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑎  ∈  ∪  𝐺  ∧  𝑏  ∈  ∪  𝐺 )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  ∅  ∧  𝑏  ∈  ∅ )  →  ∅  ∉  𝐺 ) ) | 
						
							| 7 | 6 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ∪  𝐺 ∃ 𝑏  ∈  ∪  𝐺 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  ∅  ∧  𝑏  ∈  ∅ )  →  ∅  ∉  𝐺 ) | 
						
							| 8 | 2 7 | syl | ⊢ ( ( 𝐺  ∈  Plig  ∧  ∅  ∈  𝐺 )  →  ∅  ∉  𝐺 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐺  ∈  Plig  ∧  ∅  ∉  𝐺 )  →  ∅  ∉  𝐺 ) | 
						
							| 10 | 8 9 | pm2.61danel | ⊢ ( 𝐺  ∈  Plig  →  ∅  ∉  𝐺 ) |