Metamath Proof Explorer


Theorem n0lpligALT

Description: Alternate version of n0lplig using the predicate e/ instead of -. e. and whose proof bypasses nsnlplig . (Contributed by AV, 28-Nov-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion n0lpligALT ( 𝐺 ∈ Plig → ∅ ∉ 𝐺 )

Proof

Step Hyp Ref Expression
1 eqid 𝐺 = 𝐺
2 1 l2p ( ( 𝐺 ∈ Plig ∧ ∅ ∈ 𝐺 ) → ∃ 𝑎 𝐺𝑏 𝐺 ( 𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) )
3 noel ¬ 𝑎 ∈ ∅
4 3 pm2.21i ( 𝑎 ∈ ∅ → ∅ ∉ 𝐺 )
5 4 3ad2ant2 ( ( 𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 )
6 5 a1i ( ( 𝑎 𝐺𝑏 𝐺 ) → ( ( 𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 ) )
7 6 rexlimivv ( ∃ 𝑎 𝐺𝑏 𝐺 ( 𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 )
8 2 7 syl ( ( 𝐺 ∈ Plig ∧ ∅ ∈ 𝐺 ) → ∅ ∉ 𝐺 )
9 simpr ( ( 𝐺 ∈ Plig ∧ ∅ ∉ 𝐺 ) → ∅ ∉ 𝐺 )
10 8 9 pm2.61danel ( 𝐺 ∈ Plig → ∅ ∉ 𝐺 )