Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐺 = ∪ 𝐺 |
2 |
1
|
l2p |
⊢ ( ( 𝐺 ∈ Plig ∧ ∅ ∈ 𝐺 ) → ∃ 𝑎 ∈ ∪ 𝐺 ∃ 𝑏 ∈ ∪ 𝐺 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) ) |
3 |
|
noel |
⊢ ¬ 𝑎 ∈ ∅ |
4 |
3
|
pm2.21i |
⊢ ( 𝑎 ∈ ∅ → ∅ ∉ 𝐺 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 ) ) |
7 |
6
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ∪ 𝐺 ∃ 𝑏 ∈ ∪ 𝐺 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅ ) → ∅ ∉ 𝐺 ) |
8 |
2 7
|
syl |
⊢ ( ( 𝐺 ∈ Plig ∧ ∅ ∈ 𝐺 ) → ∅ ∉ 𝐺 ) |
9 |
|
simpr |
⊢ ( ( 𝐺 ∈ Plig ∧ ∅ ∉ 𝐺 ) → ∅ ∉ 𝐺 ) |
10 |
8 9
|
pm2.61danel |
⊢ ( 𝐺 ∈ Plig → ∅ ∉ 𝐺 ) |