Step |
Hyp |
Ref |
Expression |
1 |
|
eulplig.1 |
⊢ 𝑃 = ∪ 𝐺 |
2 |
1
|
isplig |
⊢ ( 𝐺 ∈ Plig → ( 𝐺 ∈ Plig ↔ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝐺 ∈ Plig → ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) ) |
4 |
|
simp1 |
⊢ ( ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ∧ ∀ 𝑙 ∈ 𝐺 ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ∧ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 ∃ 𝑐 ∈ 𝑃 ∀ 𝑙 ∈ 𝐺 ¬ ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙 ) ) → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝑎 = 𝐴 ) |
6 |
|
simpr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
7 |
5 6
|
neeq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵 ) ) |
8 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ 𝑙 ↔ 𝐴 ∈ 𝑙 ) ) |
9 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ 𝑙 ↔ 𝐵 ∈ 𝑙 ) ) |
10 |
8 9
|
bi2anan9 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) |
11 |
10
|
reubidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ↔ ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) |
12 |
7 11
|
imbi12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) ↔ ( 𝐴 ≠ 𝐵 → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) ) |
13 |
12
|
rspc2gv |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) → ( 𝐴 ≠ 𝐵 → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) ) |
14 |
13
|
com23 |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 ≠ 𝐵 → ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) |
16 |
15
|
com12 |
⊢ ( ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( 𝑎 ≠ 𝑏 → ∃! 𝑙 ∈ 𝐺 ( 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ) ) → ( ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) |
17 |
3 4 16
|
3syl |
⊢ ( 𝐺 ∈ Plig → ( ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐺 ∈ Plig ∧ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ) → ∃! 𝑙 ∈ 𝐺 ( 𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙 ) ) |