| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulplig.1 | ⊢ 𝑃  =  ∪  𝐺 | 
						
							| 2 | 1 | isplig | ⊢ ( 𝐺  ∈  Plig  →  ( 𝐺  ∈  Plig  ↔  ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  ∧  ∀ 𝑙  ∈  𝐺 ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 )  ∧  ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ∃ 𝑐  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙 ) ) ) ) | 
						
							| 3 | 2 | ibi | ⊢ ( 𝐺  ∈  Plig  →  ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  ∧  ∀ 𝑙  ∈  𝐺 ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 )  ∧  ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ∃ 𝑐  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙 ) ) ) | 
						
							| 4 |  | simp1 | ⊢ ( ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  ∧  ∀ 𝑙  ∈  𝐺 ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  ∧  𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 )  ∧  ∃ 𝑎  ∈  𝑃 ∃ 𝑏  ∈  𝑃 ∃ 𝑐  ∈  𝑃 ∀ 𝑙  ∈  𝐺 ¬  ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙  ∧  𝑐  ∈  𝑙 ) )  →  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑎  =  𝐴 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑏  =  𝐵 ) | 
						
							| 7 | 5 6 | neeq12d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ≠  𝑏  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ∈  𝑙  ↔  𝐴  ∈  𝑙 ) ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏  ∈  𝑙  ↔  𝐵  ∈  𝑙 ) ) | 
						
							| 10 | 8 9 | bi2anan9 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 )  ↔  ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) | 
						
							| 11 | 10 | reubidv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 )  ↔  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) | 
						
							| 12 | 7 11 | imbi12d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  ↔  ( 𝐴  ≠  𝐵  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) ) | 
						
							| 13 | 12 | rspc2gv | ⊢ ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  →  ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  →  ( 𝐴  ≠  𝐵  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  →  ( 𝐴  ≠  𝐵  →  ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( 𝑎  ≠  𝑏  →  ∃! 𝑙  ∈  𝐺 ( 𝑎  ∈  𝑙  ∧  𝑏  ∈  𝑙 ) )  →  ( ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  𝐴  ≠  𝐵 )  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) | 
						
							| 17 | 3 4 16 | 3syl | ⊢ ( 𝐺  ∈  Plig  →  ( ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  𝐴  ≠  𝐵 )  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝐺  ∈  Plig  ∧  ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  𝐴  ≠  𝐵 ) )  →  ∃! 𝑙  ∈  𝐺 ( 𝐴  ∈  𝑙  ∧  𝐵  ∈  𝑙 ) ) |