Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ 𝐺 ) : 𝐺 –1-1-onto→ 𝐺 |
2 |
|
f1of |
⊢ ( ( I ↾ 𝐺 ) : 𝐺 –1-1-onto→ 𝐺 → ( I ↾ 𝐺 ) : 𝐺 ⟶ 𝐺 ) |
3 |
|
pwuni |
⊢ 𝐺 ⊆ 𝒫 ∪ 𝐺 |
4 |
|
n0lplig |
⊢ ( 𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺 ) → ¬ ∅ ∈ 𝐺 ) |
6 |
|
disjsn |
⊢ ( ( 𝐺 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ 𝐺 ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺 ) → ( 𝐺 ∩ { ∅ } ) = ∅ ) |
8 |
|
reldisj |
⊢ ( 𝐺 ⊆ 𝒫 ∪ 𝐺 → ( ( 𝐺 ∩ { ∅ } ) = ∅ ↔ 𝐺 ⊆ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺 ) → ( ( 𝐺 ∩ { ∅ } ) = ∅ ↔ 𝐺 ⊆ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) ) |
10 |
7 9
|
mpbid |
⊢ ( ( 𝐺 ∈ Plig ∧ 𝐺 ⊆ 𝒫 ∪ 𝐺 ) → 𝐺 ⊆ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
11 |
3 10
|
mpan2 |
⊢ ( 𝐺 ∈ Plig → 𝐺 ⊆ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
12 |
|
fss |
⊢ ( ( ( I ↾ 𝐺 ) : 𝐺 ⟶ 𝐺 ∧ 𝐺 ⊆ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) → ( I ↾ 𝐺 ) : 𝐺 ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( ( I ↾ 𝐺 ) : 𝐺 ⟶ 𝐺 ∧ 𝐺 ∈ Plig ) → ( I ↾ 𝐺 ) : 𝐺 ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
14 |
13
|
ex |
⊢ ( ( I ↾ 𝐺 ) : 𝐺 ⟶ 𝐺 → ( 𝐺 ∈ Plig → ( I ↾ 𝐺 ) : 𝐺 ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) ) |
15 |
1 2 14
|
mp2b |
⊢ ( 𝐺 ∈ Plig → ( I ↾ 𝐺 ) : 𝐺 ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
16 |
15
|
ffdmd |
⊢ ( 𝐺 ∈ Plig → ( I ↾ 𝐺 ) : dom ( I ↾ 𝐺 ) ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) |
17 |
|
uniexg |
⊢ ( 𝐺 ∈ Plig → ∪ 𝐺 ∈ V ) |
18 |
|
resiexg |
⊢ ( 𝐺 ∈ Plig → ( I ↾ 𝐺 ) ∈ V ) |
19 |
|
isuhgrop |
⊢ ( ( ∪ 𝐺 ∈ V ∧ ( I ↾ 𝐺 ) ∈ V ) → ( 〈 ∪ 𝐺 , ( I ↾ 𝐺 ) 〉 ∈ UHGraph ↔ ( I ↾ 𝐺 ) : dom ( I ↾ 𝐺 ) ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( 𝐺 ∈ Plig → ( 〈 ∪ 𝐺 , ( I ↾ 𝐺 ) 〉 ∈ UHGraph ↔ ( I ↾ 𝐺 ) : dom ( I ↾ 𝐺 ) ⟶ ( 𝒫 ∪ 𝐺 ∖ { ∅ } ) ) ) |
21 |
16 20
|
mpbird |
⊢ ( 𝐺 ∈ Plig → 〈 ∪ 𝐺 , ( I ↾ 𝐺 ) 〉 ∈ UHGraph ) |