| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oi | ⊢ (  I   ↾  𝐺 ) : 𝐺 –1-1-onto→ 𝐺 | 
						
							| 2 |  | f1of | ⊢ ( (  I   ↾  𝐺 ) : 𝐺 –1-1-onto→ 𝐺  →  (  I   ↾  𝐺 ) : 𝐺 ⟶ 𝐺 ) | 
						
							| 3 |  | pwuni | ⊢ 𝐺  ⊆  𝒫  ∪  𝐺 | 
						
							| 4 |  | n0lplig | ⊢ ( 𝐺  ∈  Plig  →  ¬  ∅  ∈  𝐺 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  Plig  ∧  𝐺  ⊆  𝒫  ∪  𝐺 )  →  ¬  ∅  ∈  𝐺 ) | 
						
							| 6 |  | disjsn | ⊢ ( ( 𝐺  ∩  { ∅ } )  =  ∅  ↔  ¬  ∅  ∈  𝐺 ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( 𝐺  ∈  Plig  ∧  𝐺  ⊆  𝒫  ∪  𝐺 )  →  ( 𝐺  ∩  { ∅ } )  =  ∅ ) | 
						
							| 8 |  | reldisj | ⊢ ( 𝐺  ⊆  𝒫  ∪  𝐺  →  ( ( 𝐺  ∩  { ∅ } )  =  ∅  ↔  𝐺  ⊆  ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐺  ∈  Plig  ∧  𝐺  ⊆  𝒫  ∪  𝐺 )  →  ( ( 𝐺  ∩  { ∅ } )  =  ∅  ↔  𝐺  ⊆  ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( 𝐺  ∈  Plig  ∧  𝐺  ⊆  𝒫  ∪  𝐺 )  →  𝐺  ⊆  ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 11 | 3 10 | mpan2 | ⊢ ( 𝐺  ∈  Plig  →  𝐺  ⊆  ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 12 |  | fss | ⊢ ( ( (  I   ↾  𝐺 ) : 𝐺 ⟶ 𝐺  ∧  𝐺  ⊆  ( 𝒫  ∪  𝐺  ∖  { ∅ } ) )  →  (  I   ↾  𝐺 ) : 𝐺 ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 13 | 11 12 | sylan2 | ⊢ ( ( (  I   ↾  𝐺 ) : 𝐺 ⟶ 𝐺  ∧  𝐺  ∈  Plig )  →  (  I   ↾  𝐺 ) : 𝐺 ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 14 | 13 | ex | ⊢ ( (  I   ↾  𝐺 ) : 𝐺 ⟶ 𝐺  →  ( 𝐺  ∈  Plig  →  (  I   ↾  𝐺 ) : 𝐺 ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 15 | 1 2 14 | mp2b | ⊢ ( 𝐺  ∈  Plig  →  (  I   ↾  𝐺 ) : 𝐺 ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 16 | 15 | ffdmd | ⊢ ( 𝐺  ∈  Plig  →  (  I   ↾  𝐺 ) : dom  (  I   ↾  𝐺 ) ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) | 
						
							| 17 |  | uniexg | ⊢ ( 𝐺  ∈  Plig  →  ∪  𝐺  ∈  V ) | 
						
							| 18 |  | resiexg | ⊢ ( 𝐺  ∈  Plig  →  (  I   ↾  𝐺 )  ∈  V ) | 
						
							| 19 |  | isuhgrop | ⊢ ( ( ∪  𝐺  ∈  V  ∧  (  I   ↾  𝐺 )  ∈  V )  →  ( 〈 ∪  𝐺 ,  (  I   ↾  𝐺 ) 〉  ∈  UHGraph  ↔  (  I   ↾  𝐺 ) : dom  (  I   ↾  𝐺 ) ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( 𝐺  ∈  Plig  →  ( 〈 ∪  𝐺 ,  (  I   ↾  𝐺 ) 〉  ∈  UHGraph  ↔  (  I   ↾  𝐺 ) : dom  (  I   ↾  𝐺 ) ⟶ ( 𝒫  ∪  𝐺  ∖  { ∅ } ) ) ) | 
						
							| 21 | 16 20 | mpbird | ⊢ ( 𝐺  ∈  Plig  →  〈 ∪  𝐺 ,  (  I   ↾  𝐺 ) 〉  ∈  UHGraph ) |