Metamath Proof Explorer


Theorem pliguhgr

Description: Any planar incidence geometry G can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021)

Ref Expression
Assertion pliguhgr G Plig G I G UHGraph

Proof

Step Hyp Ref Expression
1 f1oi I G : G 1-1 onto G
2 f1of I G : G 1-1 onto G I G : G G
3 pwuni G 𝒫 G
4 n0lplig G Plig ¬ G
5 4 adantr G Plig G 𝒫 G ¬ G
6 disjsn G = ¬ G
7 5 6 sylibr G Plig G 𝒫 G G =
8 reldisj G 𝒫 G G = G 𝒫 G
9 8 adantl G Plig G 𝒫 G G = G 𝒫 G
10 7 9 mpbid G Plig G 𝒫 G G 𝒫 G
11 3 10 mpan2 G Plig G 𝒫 G
12 fss I G : G G G 𝒫 G I G : G 𝒫 G
13 11 12 sylan2 I G : G G G Plig I G : G 𝒫 G
14 13 ex I G : G G G Plig I G : G 𝒫 G
15 1 2 14 mp2b G Plig I G : G 𝒫 G
16 15 ffdmd G Plig I G : dom I G 𝒫 G
17 uniexg G Plig G V
18 resiexg G Plig I G V
19 isuhgrop G V I G V G I G UHGraph I G : dom I G 𝒫 G
20 17 18 19 syl2anc G Plig G I G UHGraph I G : dom I G 𝒫 G
21 16 20 mpbird G Plig G I G UHGraph