Metamath Proof Explorer


Theorem incistruhgr

Description: Anincidence structure <. P , L , I >. "where P is a set whose elements are calledpoints, L is a distinct set whose elements are calledlines and I C_ ( P X. L ) is theincidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure ) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With P = ( BaseS ) and by defining two new slots for lines and incidence relations (analogous to LineG and Itv ) and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structureis an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020)

Ref Expression
Hypotheses incistruhgr.v V=VtxG
incistruhgr.e E=iEdgG
Assertion incistruhgr GWIP×LranI=LV=PE=eLvP|vIeGUHGraph

Proof

Step Hyp Ref Expression
1 incistruhgr.v V=VtxG
2 incistruhgr.e E=iEdgG
3 rabeq V=PvV|vIe=vP|vIe
4 3 mpteq2dv V=PeLvV|vIe=eLvP|vIe
5 4 eqeq2d V=PE=eLvV|vIeE=eLvP|vIe
6 xpeq1 V=PV×L=P×L
7 6 sseq2d V=PIV×LIP×L
8 7 3anbi2d V=PGWIV×LranI=LGWIP×LranI=L
9 5 8 anbi12d V=PE=eLvV|vIeGWIV×LranI=LE=eLvP|vIeGWIP×LranI=L
10 dmeq E=eLvV|vIedomE=domeLvV|vIe
11 1 fvexi VV
12 11 rabex vV|vIeV
13 eqid eLvV|vIe=eLvV|vIe
14 12 13 dmmpti domeLvV|vIe=L
15 10 14 eqtrdi E=eLvV|vIedomE=L
16 ssrab2 vV|vIeV
17 16 a1i GWIV×LranI=LeLvV|vIeV
18 12 elpw vV|vIe𝒫VvV|vIeV
19 17 18 sylibr GWIV×LranI=LeLvV|vIe𝒫V
20 eleq2 ranI=LeranIeL
21 20 3ad2ant3 GWIV×LranI=LeranIeL
22 ssrelrn IV×LeranIvVvIe
23 22 ex IV×LeranIvVvIe
24 23 3ad2ant2 GWIV×LranI=LeranIvVvIe
25 21 24 sylbird GWIV×LranI=LeLvVvIe
26 25 imp GWIV×LranI=LeLvVvIe
27 df-ne vV|vIe¬vV|vIe=
28 rabn0 vV|vIevVvIe
29 27 28 bitr3i ¬vV|vIe=vVvIe
30 26 29 sylibr GWIV×LranI=LeL¬vV|vIe=
31 12 elsn vV|vIevV|vIe=
32 30 31 sylnibr GWIV×LranI=LeL¬vV|vIe
33 19 32 eldifd GWIV×LranI=LeLvV|vIe𝒫V
34 33 fmpttd GWIV×LranI=LeLvV|vIe:L𝒫V
35 simpl E=eLvV|vIedomE=LE=eLvV|vIe
36 simpr E=eLvV|vIedomE=LdomE=L
37 35 36 feq12d E=eLvV|vIedomE=LE:domE𝒫VeLvV|vIe:L𝒫V
38 34 37 imbitrrid E=eLvV|vIedomE=LGWIV×LranI=LE:domE𝒫V
39 15 38 mpdan E=eLvV|vIeGWIV×LranI=LE:domE𝒫V
40 39 imp E=eLvV|vIeGWIV×LranI=LE:domE𝒫V
41 9 40 syl6bir V=PE=eLvP|vIeGWIP×LranI=LE:domE𝒫V
42 41 expdimp V=PE=eLvP|vIeGWIP×LranI=LE:domE𝒫V
43 42 impcom GWIP×LranI=LV=PE=eLvP|vIeE:domE𝒫V
44 1 2 isuhgr GWGUHGraphE:domE𝒫V
45 44 3ad2ant1 GWIP×LranI=LGUHGraphE:domE𝒫V
46 45 adantr GWIP×LranI=LV=PE=eLvP|vIeGUHGraphE:domE𝒫V
47 43 46 mpbird GWIP×LranI=LV=PE=eLvP|vIeGUHGraph
48 47 ex GWIP×LranI=LV=PE=eLvP|vIeGUHGraph