Metamath Proof Explorer


Theorem ssrelrn

Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020)

Ref Expression
Assertion ssrelrn RA×BYranRaAaRY

Proof

Step Hyp Ref Expression
1 elrng YranRYranRaaRY
2 ssbr RA×BaRYaA×BY
3 brxp aA×BYaAYB
4 3 simplbi aA×BYaA
5 2 4 syl6 RA×BaRYaA
6 5 ancrd RA×BaRYaAaRY
7 6 adantl YranRRA×BaRYaAaRY
8 7 eximdv YranRRA×BaaRYaaAaRY
9 8 ex YranRRA×BaaRYaaAaRY
10 9 com23 YranRaaRYRA×BaaAaRY
11 1 10 sylbid YranRYranRRA×BaaAaRY
12 11 pm2.43i YranRRA×BaaAaRY
13 12 impcom RA×BYranRaaAaRY
14 df-rex aAaRYaaAaRY
15 13 14 sylibr RA×BYranRaAaRY