| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrng |  |-  ( Y e. ran R -> ( Y e. ran R <-> E. a a R Y ) ) | 
						
							| 2 |  | ssbr |  |-  ( R C_ ( A X. B ) -> ( a R Y -> a ( A X. B ) Y ) ) | 
						
							| 3 |  | brxp |  |-  ( a ( A X. B ) Y <-> ( a e. A /\ Y e. B ) ) | 
						
							| 4 | 3 | simplbi |  |-  ( a ( A X. B ) Y -> a e. A ) | 
						
							| 5 | 2 4 | syl6 |  |-  ( R C_ ( A X. B ) -> ( a R Y -> a e. A ) ) | 
						
							| 6 | 5 | ancrd |  |-  ( R C_ ( A X. B ) -> ( a R Y -> ( a e. A /\ a R Y ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( Y e. ran R /\ R C_ ( A X. B ) ) -> ( a R Y -> ( a e. A /\ a R Y ) ) ) | 
						
							| 8 | 7 | eximdv |  |-  ( ( Y e. ran R /\ R C_ ( A X. B ) ) -> ( E. a a R Y -> E. a ( a e. A /\ a R Y ) ) ) | 
						
							| 9 | 8 | ex |  |-  ( Y e. ran R -> ( R C_ ( A X. B ) -> ( E. a a R Y -> E. a ( a e. A /\ a R Y ) ) ) ) | 
						
							| 10 | 9 | com23 |  |-  ( Y e. ran R -> ( E. a a R Y -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) ) | 
						
							| 11 | 1 10 | sylbid |  |-  ( Y e. ran R -> ( Y e. ran R -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) ) | 
						
							| 12 | 11 | pm2.43i |  |-  ( Y e. ran R -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) | 
						
							| 13 | 12 | impcom |  |-  ( ( R C_ ( A X. B ) /\ Y e. ran R ) -> E. a ( a e. A /\ a R Y ) ) | 
						
							| 14 |  | df-rex |  |-  ( E. a e. A a R Y <-> E. a ( a e. A /\ a R Y ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ( R C_ ( A X. B ) /\ Y e. ran R ) -> E. a e. A a R Y ) |