| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrng | ⊢ ( 𝑌  ∈  ran  𝑅  →  ( 𝑌  ∈  ran  𝑅  ↔  ∃ 𝑎 𝑎 𝑅 𝑌 ) ) | 
						
							| 2 |  | ssbr | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ( 𝑎 𝑅 𝑌  →  𝑎 ( 𝐴  ×  𝐵 ) 𝑌 ) ) | 
						
							| 3 |  | brxp | ⊢ ( 𝑎 ( 𝐴  ×  𝐵 ) 𝑌  ↔  ( 𝑎  ∈  𝐴  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝑎 ( 𝐴  ×  𝐵 ) 𝑌  →  𝑎  ∈  𝐴 ) | 
						
							| 5 | 2 4 | syl6 | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ( 𝑎 𝑅 𝑌  →  𝑎  ∈  𝐴 ) ) | 
						
							| 6 | 5 | ancrd | ⊢ ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ( 𝑎 𝑅 𝑌  →  ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑌  ∈  ran  𝑅  ∧  𝑅  ⊆  ( 𝐴  ×  𝐵 ) )  →  ( 𝑎 𝑅 𝑌  →  ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) | 
						
							| 8 | 7 | eximdv | ⊢ ( ( 𝑌  ∈  ran  𝑅  ∧  𝑅  ⊆  ( 𝐴  ×  𝐵 ) )  →  ( ∃ 𝑎 𝑎 𝑅 𝑌  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑌  ∈  ran  𝑅  →  ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ( ∃ 𝑎 𝑎 𝑅 𝑌  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) ) | 
						
							| 10 | 9 | com23 | ⊢ ( 𝑌  ∈  ran  𝑅  →  ( ∃ 𝑎 𝑎 𝑅 𝑌  →  ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) ) | 
						
							| 11 | 1 10 | sylbid | ⊢ ( 𝑌  ∈  ran  𝑅  →  ( 𝑌  ∈  ran  𝑅  →  ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) ) | 
						
							| 12 | 11 | pm2.43i | ⊢ ( 𝑌  ∈  ran  𝑅  →  ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) ) | 
						
							| 13 | 12 | impcom | ⊢ ( ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  ∧  𝑌  ∈  ran  𝑅 )  →  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) | 
						
							| 14 |  | df-rex | ⊢ ( ∃ 𝑎  ∈  𝐴 𝑎 𝑅 𝑌  ↔  ∃ 𝑎 ( 𝑎  ∈  𝐴  ∧  𝑎 𝑅 𝑌 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ( 𝑅  ⊆  ( 𝐴  ×  𝐵 )  ∧  𝑌  ∈  ran  𝑅 )  →  ∃ 𝑎  ∈  𝐴 𝑎 𝑅 𝑌 ) |