| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incistruhgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | incistruhgr.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | rabeq | ⊢ ( 𝑉  =  𝑃  →  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  =  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) | 
						
							| 4 | 3 | mpteq2dv | ⊢ ( 𝑉  =  𝑃  →  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) ) | 
						
							| 5 | 4 | eqeq2d | ⊢ ( 𝑉  =  𝑃  →  ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ↔  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) ) ) | 
						
							| 6 |  | xpeq1 | ⊢ ( 𝑉  =  𝑃  →  ( 𝑉  ×  𝐿 )  =  ( 𝑃  ×  𝐿 ) ) | 
						
							| 7 | 6 | sseq2d | ⊢ ( 𝑉  =  𝑃  →  ( 𝐼  ⊆  ( 𝑉  ×  𝐿 )  ↔  𝐼  ⊆  ( 𝑃  ×  𝐿 ) ) ) | 
						
							| 8 | 7 | 3anbi2d | ⊢ ( 𝑉  =  𝑃  →  ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ↔  ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 ) ) ) | 
						
							| 9 | 5 8 | anbi12d | ⊢ ( 𝑉  =  𝑃  →  ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 ) )  ↔  ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } )  ∧  ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 ) ) ) ) | 
						
							| 10 |  | dmeq | ⊢ ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  →  dom  𝐸  =  dom  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } ) ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 12 | 11 | rabex | ⊢ { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  V | 
						
							| 13 |  | eqid | ⊢ ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } ) | 
						
							| 14 | 12 13 | dmmpti | ⊢ dom  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  =  𝐿 | 
						
							| 15 | 10 14 | eqtrdi | ⊢ ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  →  dom  𝐸  =  𝐿 ) | 
						
							| 16 |  | ssrab2 | ⊢ { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ⊆  𝑉 | 
						
							| 17 | 16 | a1i | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ⊆  𝑉 ) | 
						
							| 18 | 12 | elpw | ⊢ ( { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  𝒫  𝑉  ↔  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ⊆  𝑉 ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  𝒫  𝑉 ) | 
						
							| 20 |  | eleq2 | ⊢ ( ran  𝐼  =  𝐿  →  ( 𝑒  ∈  ran  𝐼  ↔  𝑒  ∈  𝐿 ) ) | 
						
							| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( 𝑒  ∈  ran  𝐼  ↔  𝑒  ∈  𝐿 ) ) | 
						
							| 22 |  | ssrelrn | ⊢ ( ( 𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  𝑒  ∈  ran  𝐼 )  →  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝐼  ⊆  ( 𝑉  ×  𝐿 )  →  ( 𝑒  ∈  ran  𝐼  →  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( 𝑒  ∈  ran  𝐼  →  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) ) | 
						
							| 25 | 21 24 | sylbird | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( 𝑒  ∈  𝐿  →  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) | 
						
							| 27 |  | df-ne | ⊢ ( { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ≠  ∅  ↔  ¬  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  =  ∅ ) | 
						
							| 28 |  | rabn0 | ⊢ ( { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ≠  ∅  ↔  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) | 
						
							| 29 | 27 28 | bitr3i | ⊢ ( ¬  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  =  ∅  ↔  ∃ 𝑣  ∈  𝑉 𝑣 𝐼 𝑒 ) | 
						
							| 30 | 26 29 | sylibr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  ¬  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  =  ∅ ) | 
						
							| 31 | 12 | elsn | ⊢ ( { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  { ∅ }  ↔  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  =  ∅ ) | 
						
							| 32 | 30 31 | sylnibr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  ¬  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  { ∅ } ) | 
						
							| 33 | 19 32 | eldifd | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  𝑒  ∈  𝐿 )  →  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 }  ∈  ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 34 | 33 | fmpttd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } ) : 𝐿 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 35 |  | simpl | ⊢ ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  dom  𝐸  =  𝐿 )  →  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  dom  𝐸  =  𝐿 )  →  dom  𝐸  =  𝐿 ) | 
						
							| 37 | 35 36 | feq12d | ⊢ ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  dom  𝐸  =  𝐿 )  →  ( 𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } )  ↔  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } ) : 𝐿 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 38 | 34 37 | imbitrrid | ⊢ ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  dom  𝐸  =  𝐿 )  →  ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 39 | 15 38 | mpdan | ⊢ ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  →  ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑉  ∣  𝑣 𝐼 𝑒 } )  ∧  ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑉  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 ) )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 41 | 9 40 | biimtrrdi | ⊢ ( 𝑉  =  𝑃  →  ( ( 𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } )  ∧  ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 ) )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 42 | 41 | expdimp | ⊢ ( ( 𝑉  =  𝑃  ∧  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) )  →  ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 43 | 42 | impcom | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  ( 𝑉  =  𝑃  ∧  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) ) )  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 44 | 1 2 | isuhgr | ⊢ ( 𝐺  ∈  𝑊  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 45 | 44 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  ( 𝑉  =  𝑃  ∧  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) ) )  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 47 | 43 46 | mpbird | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  ∧  ( 𝑉  =  𝑃  ∧  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) ) )  →  𝐺  ∈  UHGraph ) | 
						
							| 48 | 47 | ex | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐼  ⊆  ( 𝑃  ×  𝐿 )  ∧  ran  𝐼  =  𝐿 )  →  ( ( 𝑉  =  𝑃  ∧  𝐸  =  ( 𝑒  ∈  𝐿  ↦  { 𝑣  ∈  𝑃  ∣  𝑣 𝐼 𝑒 } ) )  →  𝐺  ∈  UHGraph ) ) |