Metamath Proof Explorer


Theorem pliguhgr

Description: Any planar incidence geometry G can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021)

Ref Expression
Assertion pliguhgr
|- ( G e. Plig -> <. U. G , ( _I |` G ) >. e. UHGraph )

Proof

Step Hyp Ref Expression
1 f1oi
 |-  ( _I |` G ) : G -1-1-onto-> G
2 f1of
 |-  ( ( _I |` G ) : G -1-1-onto-> G -> ( _I |` G ) : G --> G )
3 pwuni
 |-  G C_ ~P U. G
4 n0lplig
 |-  ( G e. Plig -> -. (/) e. G )
5 4 adantr
 |-  ( ( G e. Plig /\ G C_ ~P U. G ) -> -. (/) e. G )
6 disjsn
 |-  ( ( G i^i { (/) } ) = (/) <-> -. (/) e. G )
7 5 6 sylibr
 |-  ( ( G e. Plig /\ G C_ ~P U. G ) -> ( G i^i { (/) } ) = (/) )
8 reldisj
 |-  ( G C_ ~P U. G -> ( ( G i^i { (/) } ) = (/) <-> G C_ ( ~P U. G \ { (/) } ) ) )
9 8 adantl
 |-  ( ( G e. Plig /\ G C_ ~P U. G ) -> ( ( G i^i { (/) } ) = (/) <-> G C_ ( ~P U. G \ { (/) } ) ) )
10 7 9 mpbid
 |-  ( ( G e. Plig /\ G C_ ~P U. G ) -> G C_ ( ~P U. G \ { (/) } ) )
11 3 10 mpan2
 |-  ( G e. Plig -> G C_ ( ~P U. G \ { (/) } ) )
12 fss
 |-  ( ( ( _I |` G ) : G --> G /\ G C_ ( ~P U. G \ { (/) } ) ) -> ( _I |` G ) : G --> ( ~P U. G \ { (/) } ) )
13 11 12 sylan2
 |-  ( ( ( _I |` G ) : G --> G /\ G e. Plig ) -> ( _I |` G ) : G --> ( ~P U. G \ { (/) } ) )
14 13 ex
 |-  ( ( _I |` G ) : G --> G -> ( G e. Plig -> ( _I |` G ) : G --> ( ~P U. G \ { (/) } ) ) )
15 1 2 14 mp2b
 |-  ( G e. Plig -> ( _I |` G ) : G --> ( ~P U. G \ { (/) } ) )
16 15 ffdmd
 |-  ( G e. Plig -> ( _I |` G ) : dom ( _I |` G ) --> ( ~P U. G \ { (/) } ) )
17 uniexg
 |-  ( G e. Plig -> U. G e. _V )
18 resiexg
 |-  ( G e. Plig -> ( _I |` G ) e. _V )
19 isuhgrop
 |-  ( ( U. G e. _V /\ ( _I |` G ) e. _V ) -> ( <. U. G , ( _I |` G ) >. e. UHGraph <-> ( _I |` G ) : dom ( _I |` G ) --> ( ~P U. G \ { (/) } ) ) )
20 17 18 19 syl2anc
 |-  ( G e. Plig -> ( <. U. G , ( _I |` G ) >. e. UHGraph <-> ( _I |` G ) : dom ( _I |` G ) --> ( ~P U. G \ { (/) } ) ) )
21 16 20 mpbird
 |-  ( G e. Plig -> <. U. G , ( _I |` G ) >. e. UHGraph )