Metamath Proof Explorer


Theorem eulplig

Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021)

Ref Expression
Hypothesis eulplig.1 P = G
Assertion eulplig G Plig A P B P A B ∃! l G A l B l

Proof

Step Hyp Ref Expression
1 eulplig.1 P = G
2 1 isplig G Plig G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
3 2 ibi G Plig a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l
4 simp1 a P b P a b ∃! l G a l b l l G a P b P a b a l b l a P b P c P l G ¬ a l b l c l a P b P a b ∃! l G a l b l
5 simpl a = A b = B a = A
6 simpr a = A b = B b = B
7 5 6 neeq12d a = A b = B a b A B
8 eleq1 a = A a l A l
9 eleq1 b = B b l B l
10 8 9 bi2anan9 a = A b = B a l b l A l B l
11 10 reubidv a = A b = B ∃! l G a l b l ∃! l G A l B l
12 7 11 imbi12d a = A b = B a b ∃! l G a l b l A B ∃! l G A l B l
13 12 rspc2gv A P B P a P b P a b ∃! l G a l b l A B ∃! l G A l B l
14 13 com23 A P B P A B a P b P a b ∃! l G a l b l ∃! l G A l B l
15 14 imp A P B P A B a P b P a b ∃! l G a l b l ∃! l G A l B l
16 15 com12 a P b P a b ∃! l G a l b l A P B P A B ∃! l G A l B l
17 3 4 16 3syl G Plig A P B P A B ∃! l G A l B l
18 17 imp G Plig A P B P A B ∃! l G A l B l