Metamath Proof Explorer


Theorem n0snor2el

Description: A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020)

Ref Expression
Assertion n0snor2el AxAyAxyzA=z

Proof

Step Hyp Ref Expression
1 issn wAyAw=yzA=z
2 1 olcd wAyAw=yxAyAxyzA=z
3 2 a1d wAyAw=yAxAyAxyzA=z
4 df-ne wy¬w=y
5 4 rexbii yAwyyA¬w=y
6 rexnal yA¬w=y¬yAw=y
7 5 6 bitri yAwy¬yAw=y
8 7 ralbii wAyAwywA¬yAw=y
9 ralnex wA¬yAw=y¬wAyAw=y
10 8 9 bitri wAyAwy¬wAyAw=y
11 neeq1 w=xwyxy
12 11 rexbidv w=xyAwyyAxy
13 12 rspccva wAyAwyxAyAxy
14 13 reximdva0 wAyAwyAxAyAxy
15 14 orcd wAyAwyAxAyAxyzA=z
16 15 ex wAyAwyAxAyAxyzA=z
17 10 16 sylbir ¬wAyAw=yAxAyAxyzA=z
18 3 17 pm2.61i AxAyAxyzA=z