Metamath Proof Explorer


Theorem naddcnffn

Description: Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnffn XOnS=domωCNFXf+𝑜S×SFnS×S

Proof

Step Hyp Ref Expression
1 naddcnff XOnS=domωCNFXf+𝑜S×S:S×SS
2 1 ffnd XOnS=domωCNFXf+𝑜S×SFnS×S