Metamath Proof Explorer


Theorem naddcnffo

Description: Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnffo X On S = dom ω CNF X f + 𝑜 S × S : S × S onto S

Proof

Step Hyp Ref Expression
1 naddcnff X On S = dom ω CNF X f + 𝑜 S × S : S × S S
2 simpr X On S = dom ω CNF X f S f S
3 peano1 ω
4 fconst6g ω X × : X ω
5 3 4 mp1i X On S = dom ω CNF X X × : X ω
6 simpl X On S = dom ω CNF X X On
7 3 a1i X On S = dom ω CNF X ω
8 6 7 fczfsuppd X On S = dom ω CNF X finSupp X ×
9 simpr X On S = dom ω CNF X S = dom ω CNF X
10 9 eleq2d X On S = dom ω CNF X X × S X × dom ω CNF X
11 eqid dom ω CNF X = dom ω CNF X
12 omelon ω On
13 12 a1i X On S = dom ω CNF X ω On
14 11 13 6 cantnfs X On S = dom ω CNF X X × dom ω CNF X X × : X ω finSupp X ×
15 10 14 bitrd X On S = dom ω CNF X X × S X × : X ω finSupp X ×
16 5 8 15 mpbir2and X On S = dom ω CNF X X × S
17 16 adantr X On S = dom ω CNF X f S X × S
18 simpl f S X × S f S
19 18 adantl X On S = dom ω CNF X f S X × S f S
20 simpr f S X × S X × S
21 20 adantl X On S = dom ω CNF X f S X × S X × S
22 19 21 ovresd X On S = dom ω CNF X f S X × S f f + 𝑜 S × S X × = f + 𝑜 f X ×
23 9 eleq2d X On S = dom ω CNF X f S f dom ω CNF X
24 11 13 6 cantnfs X On S = dom ω CNF X f dom ω CNF X f : X ω finSupp f
25 23 24 bitrd X On S = dom ω CNF X f S f : X ω finSupp f
26 25 biimpd X On S = dom ω CNF X f S f : X ω finSupp f
27 simpl f : X ω finSupp f f : X ω
28 18 26 27 syl56 X On S = dom ω CNF X f S X × S f : X ω
29 28 imp X On S = dom ω CNF X f S X × S f : X ω
30 29 ffnd X On S = dom ω CNF X f S X × S f Fn X
31 fnconstg ω X × Fn X
32 3 31 mp1i X On S = dom ω CNF X f S X × S X × Fn X
33 6 adantr X On S = dom ω CNF X f S X × S X On
34 inidm X X = X
35 30 32 33 33 34 offn X On S = dom ω CNF X f S X × S f + 𝑜 f X × Fn X
36 30 adantr X On S = dom ω CNF X f S X × S x X f Fn X
37 3 31 mp1i X On S = dom ω CNF X f S X × S x X X × Fn X
38 simplll X On S = dom ω CNF X f S X × S x X X On
39 simpr X On S = dom ω CNF X f S X × S x X x X
40 fnfvof f Fn X X × Fn X X On x X f + 𝑜 f X × x = f x + 𝑜 X × x
41 36 37 38 39 40 syl22anc X On S = dom ω CNF X f S X × S x X f + 𝑜 f X × x = f x + 𝑜 X × x
42 3 a1i X On S = dom ω CNF X f S X × S x X ω
43 fvconst2g ω x X X × x =
44 42 39 43 syl2anc X On S = dom ω CNF X f S X × S x X X × x =
45 44 oveq2d X On S = dom ω CNF X f S X × S x X f x + 𝑜 X × x = f x + 𝑜
46 29 ffvelcdmda X On S = dom ω CNF X f S X × S x X f x ω
47 nnon f x ω f x On
48 oa0 f x On f x + 𝑜 = f x
49 46 47 48 3syl X On S = dom ω CNF X f S X × S x X f x + 𝑜 = f x
50 41 45 49 3eqtrd X On S = dom ω CNF X f S X × S x X f + 𝑜 f X × x = f x
51 35 30 50 eqfnfvd X On S = dom ω CNF X f S X × S f + 𝑜 f X × = f
52 22 51 eqtr2d X On S = dom ω CNF X f S X × S f = f f + 𝑜 S × S X ×
53 52 expr X On S = dom ω CNF X f S X × S f = f f + 𝑜 S × S X ×
54 17 53 jcai X On S = dom ω CNF X f S X × S f = f f + 𝑜 S × S X ×
55 oveq2 z = X × f f + 𝑜 S × S z = f f + 𝑜 S × S X ×
56 55 rspceeqv X × S f = f f + 𝑜 S × S X × z S f = f f + 𝑜 S × S z
57 54 56 syl X On S = dom ω CNF X f S z S f = f f + 𝑜 S × S z
58 oveq1 g = f g f + 𝑜 S × S z = f f + 𝑜 S × S z
59 58 eqeq2d g = f f = g f + 𝑜 S × S z f = f f + 𝑜 S × S z
60 59 rexbidv g = f z S f = g f + 𝑜 S × S z z S f = f f + 𝑜 S × S z
61 60 rspcev f S z S f = f f + 𝑜 S × S z g S z S f = g f + 𝑜 S × S z
62 2 57 61 syl2anc X On S = dom ω CNF X f S g S z S f = g f + 𝑜 S × S z
63 62 ralrimiva X On S = dom ω CNF X f S g S z S f = g f + 𝑜 S × S z
64 foov f + 𝑜 S × S : S × S onto S f + 𝑜 S × S : S × S S f S g S z S f = g f + 𝑜 S × S z
65 1 63 64 sylanbrc X On S = dom ω CNF X f + 𝑜 S × S : S × S onto S