Step |
Hyp |
Ref |
Expression |
1 |
|
naddcnff |
|
2 |
|
simpr |
|
3 |
|
peano1 |
|
4 |
|
fconst6g |
|
5 |
3 4
|
mp1i |
|
6 |
|
simpl |
|
7 |
3
|
a1i |
|
8 |
6 7
|
fczfsuppd |
|
9 |
|
simpr |
|
10 |
9
|
eleq2d |
|
11 |
|
eqid |
|
12 |
|
omelon |
|
13 |
12
|
a1i |
|
14 |
11 13 6
|
cantnfs |
|
15 |
10 14
|
bitrd |
|
16 |
5 8 15
|
mpbir2and |
|
17 |
16
|
adantr |
|
18 |
|
simpl |
|
19 |
18
|
adantl |
|
20 |
|
simpr |
|
21 |
20
|
adantl |
|
22 |
19 21
|
ovresd |
|
23 |
9
|
eleq2d |
|
24 |
11 13 6
|
cantnfs |
|
25 |
23 24
|
bitrd |
|
26 |
25
|
biimpd |
|
27 |
|
simpl |
|
28 |
18 26 27
|
syl56 |
|
29 |
28
|
imp |
|
30 |
29
|
ffnd |
|
31 |
|
fnconstg |
|
32 |
3 31
|
mp1i |
|
33 |
6
|
adantr |
|
34 |
|
inidm |
|
35 |
30 32 33 33 34
|
offn |
|
36 |
30
|
adantr |
|
37 |
3 31
|
mp1i |
|
38 |
|
simplll |
|
39 |
|
simpr |
|
40 |
|
fnfvof |
|
41 |
36 37 38 39 40
|
syl22anc |
|
42 |
3
|
a1i |
|
43 |
|
fvconst2g |
|
44 |
42 39 43
|
syl2anc |
|
45 |
44
|
oveq2d |
|
46 |
29
|
ffvelcdmda |
|
47 |
|
nnon |
|
48 |
|
oa0 |
|
49 |
46 47 48
|
3syl |
|
50 |
41 45 49
|
3eqtrd |
|
51 |
35 30 50
|
eqfnfvd |
|
52 |
22 51
|
eqtr2d |
|
53 |
52
|
expr |
|
54 |
17 53
|
jcai |
|
55 |
|
oveq2 |
|
56 |
55
|
rspceeqv |
|
57 |
54 56
|
syl |
|
58 |
|
oveq1 |
|
59 |
58
|
eqeq2d |
|
60 |
59
|
rexbidv |
|
61 |
60
|
rspcev |
|
62 |
2 57 61
|
syl2anc |
|
63 |
62
|
ralrimiva |
|
64 |
|
foov |
|
65 |
1 63 64
|
sylanbrc |
|