Metamath Proof Explorer


Theorem naddcnfcl

Description: Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnfcl XOnS=domωCNFXFSGSF+𝑜fGS

Proof

Step Hyp Ref Expression
1 ovres FSGSFf+𝑜S×SG=F+𝑜fG
2 1 adantl XOnS=domωCNFXFSGSFf+𝑜S×SG=F+𝑜fG
3 naddcnff XOnS=domωCNFXf+𝑜S×S:S×SS
4 3 fovcdmda XOnS=domωCNFXFSGSFf+𝑜S×SGS
5 2 4 eqeltrrd XOnS=domωCNFXFSGSF+𝑜fGS