| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 | 1 | eleq2d |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | omelon |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 |  | simpl |  | 
						
							| 7 | 3 5 6 | cantnfs |  | 
						
							| 8 | 2 7 | bitrd |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 | 8 9 | biimtrdi |  | 
						
							| 11 |  | simpl |  | 
						
							| 12 | 10 11 | impel |  | 
						
							| 13 | 12 | ffnd |  | 
						
							| 14 | 1 | eleq2d |  | 
						
							| 15 | 3 5 6 | cantnfs |  | 
						
							| 16 | 14 15 | bitrd |  | 
						
							| 17 |  | simpl |  | 
						
							| 18 | 16 17 | biimtrdi |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 18 19 | impel |  | 
						
							| 21 | 20 | ffnd |  | 
						
							| 22 |  | simpll |  | 
						
							| 23 |  | inidm |  | 
						
							| 24 | 13 21 22 22 23 | offn |  | 
						
							| 25 | 21 13 22 22 23 | offn |  | 
						
							| 26 | 12 | ffvelcdmda |  | 
						
							| 27 | 20 | ffvelcdmda |  | 
						
							| 28 |  | nnacom |  | 
						
							| 29 | 26 27 28 | syl2anc |  | 
						
							| 30 | 13 | adantr |  | 
						
							| 31 | 21 | adantr |  | 
						
							| 32 |  | simplll |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | fnfvof |  | 
						
							| 35 | 30 31 32 33 34 | syl22anc |  | 
						
							| 36 |  | fnfvof |  | 
						
							| 37 | 31 30 32 33 36 | syl22anc |  | 
						
							| 38 | 29 35 37 | 3eqtr4d |  | 
						
							| 39 | 24 25 38 | eqfnfvd |  |