Metamath Proof Explorer


Theorem naddcnfcom

Description: Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnfcom X On S = dom ω CNF X F S G S F + 𝑜 f G = G + 𝑜 f F

Proof

Step Hyp Ref Expression
1 simpr X On S = dom ω CNF X S = dom ω CNF X
2 1 eleq2d X On S = dom ω CNF X F S F dom ω CNF X
3 eqid dom ω CNF X = dom ω CNF X
4 omelon ω On
5 4 a1i X On S = dom ω CNF X ω On
6 simpl X On S = dom ω CNF X X On
7 3 5 6 cantnfs X On S = dom ω CNF X F dom ω CNF X F : X ω finSupp F
8 2 7 bitrd X On S = dom ω CNF X F S F : X ω finSupp F
9 simpl F : X ω finSupp F F : X ω
10 8 9 biimtrdi X On S = dom ω CNF X F S F : X ω
11 simpl F S G S F S
12 10 11 impel X On S = dom ω CNF X F S G S F : X ω
13 12 ffnd X On S = dom ω CNF X F S G S F Fn X
14 1 eleq2d X On S = dom ω CNF X G S G dom ω CNF X
15 3 5 6 cantnfs X On S = dom ω CNF X G dom ω CNF X G : X ω finSupp G
16 14 15 bitrd X On S = dom ω CNF X G S G : X ω finSupp G
17 simpl G : X ω finSupp G G : X ω
18 16 17 biimtrdi X On S = dom ω CNF X G S G : X ω
19 simpr F S G S G S
20 18 19 impel X On S = dom ω CNF X F S G S G : X ω
21 20 ffnd X On S = dom ω CNF X F S G S G Fn X
22 simpll X On S = dom ω CNF X F S G S X On
23 inidm X X = X
24 13 21 22 22 23 offn X On S = dom ω CNF X F S G S F + 𝑜 f G Fn X
25 21 13 22 22 23 offn X On S = dom ω CNF X F S G S G + 𝑜 f F Fn X
26 12 ffvelcdmda X On S = dom ω CNF X F S G S x X F x ω
27 20 ffvelcdmda X On S = dom ω CNF X F S G S x X G x ω
28 nnacom F x ω G x ω F x + 𝑜 G x = G x + 𝑜 F x
29 26 27 28 syl2anc X On S = dom ω CNF X F S G S x X F x + 𝑜 G x = G x + 𝑜 F x
30 13 adantr X On S = dom ω CNF X F S G S x X F Fn X
31 21 adantr X On S = dom ω CNF X F S G S x X G Fn X
32 simplll X On S = dom ω CNF X F S G S x X X On
33 simpr X On S = dom ω CNF X F S G S x X x X
34 fnfvof F Fn X G Fn X X On x X F + 𝑜 f G x = F x + 𝑜 G x
35 30 31 32 33 34 syl22anc X On S = dom ω CNF X F S G S x X F + 𝑜 f G x = F x + 𝑜 G x
36 fnfvof G Fn X F Fn X X On x X G + 𝑜 f F x = G x + 𝑜 F x
37 31 30 32 33 36 syl22anc X On S = dom ω CNF X F S G S x X G + 𝑜 f F x = G x + 𝑜 F x
38 29 35 37 3eqtr4d X On S = dom ω CNF X F S G S x X F + 𝑜 f G x = G + 𝑜 f F x
39 24 25 38 eqfnfvd X On S = dom ω CNF X F S G S F + 𝑜 f G = G + 𝑜 f F