Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
eleq2d |
|
3 |
|
eqid |
|
4 |
|
omelon |
|
5 |
4
|
a1i |
|
6 |
|
simpl |
|
7 |
3 5 6
|
cantnfs |
|
8 |
2 7
|
bitrd |
|
9 |
|
simpl |
|
10 |
8 9
|
biimtrdi |
|
11 |
|
simpl |
|
12 |
10 11
|
impel |
|
13 |
12
|
ffnd |
|
14 |
1
|
eleq2d |
|
15 |
3 5 6
|
cantnfs |
|
16 |
14 15
|
bitrd |
|
17 |
|
simpl |
|
18 |
16 17
|
biimtrdi |
|
19 |
|
simpr |
|
20 |
18 19
|
impel |
|
21 |
20
|
ffnd |
|
22 |
|
simpll |
|
23 |
|
inidm |
|
24 |
13 21 22 22 23
|
offn |
|
25 |
21 13 22 22 23
|
offn |
|
26 |
12
|
ffvelcdmda |
|
27 |
20
|
ffvelcdmda |
|
28 |
|
nnacom |
|
29 |
26 27 28
|
syl2anc |
|
30 |
13
|
adantr |
|
31 |
21
|
adantr |
|
32 |
|
simplll |
|
33 |
|
simpr |
|
34 |
|
fnfvof |
|
35 |
30 31 32 33 34
|
syl22anc |
|
36 |
|
fnfvof |
|
37 |
31 30 32 33 36
|
syl22anc |
|
38 |
29 35 37
|
3eqtr4d |
|
39 |
24 25 38
|
eqfnfvd |
|