Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑆 = dom ( ω CNF 𝑋 ) ) |
2 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom ( ω CNF 𝑋 ) ) ) |
3 |
|
eqid |
⊢ dom ( ω CNF 𝑋 ) = dom ( ω CNF 𝑋 ) |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ω ∈ On ) |
6 |
|
simpl |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑋 ∈ On ) |
7 |
3 5 6
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
8 |
2 7
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) → 𝐹 : 𝑋 ⟶ ω ) |
10 |
8 9
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 → 𝐹 : 𝑋 ⟶ ω ) ) |
11 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → 𝐹 ∈ 𝑆 ) |
12 |
10 11
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → 𝐹 : 𝑋 ⟶ ω ) |
13 |
12
|
ffnd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → 𝐹 Fn 𝑋 ) |
14 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom ( ω CNF 𝑋 ) ) ) |
15 |
3 5 6
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) ) ) |
16 |
14 15
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) ) ) |
17 |
|
simpl |
⊢ ( ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) → 𝐺 : 𝑋 ⟶ ω ) |
18 |
16 17
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 → 𝐺 : 𝑋 ⟶ ω ) ) |
19 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → 𝐺 ∈ 𝑆 ) |
20 |
18 19
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → 𝐺 : 𝑋 ⟶ ω ) |
21 |
20
|
ffnd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → 𝐺 Fn 𝑋 ) |
22 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → 𝑋 ∈ On ) |
23 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
24 |
13 21 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝑋 ) |
25 |
21 13 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐺 ∘f +o 𝐹 ) Fn 𝑋 ) |
26 |
12
|
ffvelcdmda |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ω ) |
27 |
20
|
ffvelcdmda |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ω ) |
28 |
|
nnacom |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ω ∧ ( 𝐺 ‘ 𝑥 ) ∈ ω ) → ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐹 ‘ 𝑥 ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
13
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
31 |
21
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
32 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ On ) |
33 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
34 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) ) |
35 |
30 31 32 33 34
|
syl22anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) ) |
36 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝑋 ∧ 𝐹 Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐹 ‘ 𝑥 ) ) ) |
37 |
31 30 32 33 36
|
syl22anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐹 ‘ 𝑥 ) ) ) |
38 |
29 35 37
|
3eqtr4d |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) = ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑥 ) ) |
39 |
24 25 38
|
eqfnfvd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐹 ∘f +o 𝐺 ) = ( 𝐺 ∘f +o 𝐹 ) ) |