Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
2 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> F e. dom ( _om CNF X ) ) ) |
3 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
4 |
|
omelon |
|- _om e. On |
5 |
4
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
6 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
7 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. dom ( _om CNF X ) <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
8 |
2 7
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
9 |
|
simpl |
|- ( ( F : X --> _om /\ F finSupp (/) ) -> F : X --> _om ) |
10 |
8 9
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S -> F : X --> _om ) ) |
11 |
|
simpl |
|- ( ( F e. S /\ G e. S ) -> F e. S ) |
12 |
10 11
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> F : X --> _om ) |
13 |
12
|
ffnd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> F Fn X ) |
14 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S <-> G e. dom ( _om CNF X ) ) ) |
15 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. dom ( _om CNF X ) <-> ( G : X --> _om /\ G finSupp (/) ) ) ) |
16 |
14 15
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S <-> ( G : X --> _om /\ G finSupp (/) ) ) ) |
17 |
|
simpl |
|- ( ( G : X --> _om /\ G finSupp (/) ) -> G : X --> _om ) |
18 |
16 17
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S -> G : X --> _om ) ) |
19 |
|
simpr |
|- ( ( F e. S /\ G e. S ) -> G e. S ) |
20 |
18 19
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> G : X --> _om ) |
21 |
20
|
ffnd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> G Fn X ) |
22 |
|
simpll |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> X e. On ) |
23 |
|
inidm |
|- ( X i^i X ) = X |
24 |
13 21 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) Fn X ) |
25 |
21 13 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( G oF +o F ) Fn X ) |
26 |
12
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( F ` x ) e. _om ) |
27 |
20
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( G ` x ) e. _om ) |
28 |
|
nnacom |
|- ( ( ( F ` x ) e. _om /\ ( G ` x ) e. _om ) -> ( ( F ` x ) +o ( G ` x ) ) = ( ( G ` x ) +o ( F ` x ) ) ) |
29 |
26 27 28
|
syl2anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( ( F ` x ) +o ( G ` x ) ) = ( ( G ` x ) +o ( F ` x ) ) ) |
30 |
13
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> F Fn X ) |
31 |
21
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> G Fn X ) |
32 |
|
simplll |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> X e. On ) |
33 |
|
simpr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> x e. X ) |
34 |
|
fnfvof |
|- ( ( ( F Fn X /\ G Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( F oF +o G ) ` x ) = ( ( F ` x ) +o ( G ` x ) ) ) |
35 |
30 31 32 33 34
|
syl22anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( ( F oF +o G ) ` x ) = ( ( F ` x ) +o ( G ` x ) ) ) |
36 |
|
fnfvof |
|- ( ( ( G Fn X /\ F Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( G oF +o F ) ` x ) = ( ( G ` x ) +o ( F ` x ) ) ) |
37 |
31 30 32 33 36
|
syl22anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( ( G oF +o F ) ` x ) = ( ( G ` x ) +o ( F ` x ) ) ) |
38 |
29 35 37
|
3eqtr4d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) /\ x e. X ) -> ( ( F oF +o G ) ` x ) = ( ( G oF +o F ) ` x ) ) |
39 |
24 25 38
|
eqfnfvd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) = ( G oF +o F ) ) |