Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
|- (/) e. _om |
2 |
|
fconst6g |
|- ( (/) e. _om -> ( X X. { (/) } ) : X --> _om ) |
3 |
1 2
|
mp1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) : X --> _om ) |
4 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
5 |
1
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> (/) e. _om ) |
6 |
4 5
|
fczfsuppd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) finSupp (/) ) |
7 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
8 |
7
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( X X. { (/) } ) e. dom ( _om CNF X ) ) ) |
9 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
10 |
|
omelon |
|- _om e. On |
11 |
10
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
12 |
9 11 4
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. dom ( _om CNF X ) <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
13 |
8 12
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
14 |
3 6 13
|
mpbir2and |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) e. S ) |
15 |
7
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> F e. dom ( _om CNF X ) ) ) |
16 |
9 11 4
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. dom ( _om CNF X ) <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
17 |
15 16
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
18 |
17
|
simprbda |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> F : X --> _om ) |
19 |
18
|
ffnd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> F Fn X ) |
20 |
19
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> F Fn X ) |
21 |
2
|
ffnd |
|- ( (/) e. _om -> ( X X. { (/) } ) Fn X ) |
22 |
1 21
|
mp1i |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> ( X X. { (/) } ) Fn X ) |
23 |
|
simplll |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> X e. On ) |
24 |
|
inidm |
|- ( X i^i X ) = X |
25 |
20 22 23 23 24
|
offn |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> ( F oF +o ( X X. { (/) } ) ) Fn X ) |
26 |
20
|
adantr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> F Fn X ) |
27 |
1 21
|
mp1i |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( X X. { (/) } ) Fn X ) |
28 |
|
simp-4l |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> X e. On ) |
29 |
|
simpr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> x e. X ) |
30 |
|
fnfvof |
|- ( ( ( F Fn X /\ ( X X. { (/) } ) Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( F oF +o ( X X. { (/) } ) ) ` x ) = ( ( F ` x ) +o ( ( X X. { (/) } ) ` x ) ) ) |
31 |
26 27 28 29 30
|
syl22anc |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( ( F oF +o ( X X. { (/) } ) ) ` x ) = ( ( F ` x ) +o ( ( X X. { (/) } ) ` x ) ) ) |
32 |
|
fvconst2g |
|- ( ( (/) e. _om /\ x e. X ) -> ( ( X X. { (/) } ) ` x ) = (/) ) |
33 |
1 29 32
|
sylancr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( ( X X. { (/) } ) ` x ) = (/) ) |
34 |
33
|
oveq2d |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( ( F ` x ) +o ( ( X X. { (/) } ) ` x ) ) = ( ( F ` x ) +o (/) ) ) |
35 |
18
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> F : X --> _om ) |
36 |
35
|
ffvelcdmda |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( F ` x ) e. _om ) |
37 |
|
nna0 |
|- ( ( F ` x ) e. _om -> ( ( F ` x ) +o (/) ) = ( F ` x ) ) |
38 |
36 37
|
syl |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( ( F ` x ) +o (/) ) = ( F ` x ) ) |
39 |
31 34 38
|
3eqtrd |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) /\ x e. X ) -> ( ( F oF +o ( X X. { (/) } ) ) ` x ) = ( F ` x ) ) |
40 |
25 20 39
|
eqfnfvd |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) /\ ( X X. { (/) } ) e. S ) -> ( F oF +o ( X X. { (/) } ) ) = F ) |
41 |
14 40
|
mpidan |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> ( F oF +o ( X X. { (/) } ) ) = F ) |