Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
|- (/) e. _om |
2 |
|
fconst6g |
|- ( (/) e. _om -> ( X X. { (/) } ) : X --> _om ) |
3 |
1 2
|
mp1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) : X --> _om ) |
4 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
5 |
1
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> (/) e. _om ) |
6 |
4 5
|
fczfsuppd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) finSupp (/) ) |
7 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
8 |
7
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( X X. { (/) } ) e. dom ( _om CNF X ) ) ) |
9 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
10 |
|
omelon |
|- _om e. On |
11 |
10
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
12 |
9 11 4
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. dom ( _om CNF X ) <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
13 |
8 12
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
14 |
3 6 13
|
mpbir2and |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) e. S ) |
15 |
|
naddcnfcom |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( ( X X. { (/) } ) e. S /\ F e. S ) ) -> ( ( X X. { (/) } ) oF +o F ) = ( F oF +o ( X X. { (/) } ) ) ) |
16 |
15
|
ex |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( ( X X. { (/) } ) e. S /\ F e. S ) -> ( ( X X. { (/) } ) oF +o F ) = ( F oF +o ( X X. { (/) } ) ) ) ) |
17 |
14 16
|
mpand |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S -> ( ( X X. { (/) } ) oF +o F ) = ( F oF +o ( X X. { (/) } ) ) ) ) |
18 |
17
|
imp |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> ( ( X X. { (/) } ) oF +o F ) = ( F oF +o ( X X. { (/) } ) ) ) |
19 |
|
naddcnfid1 |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> ( F oF +o ( X X. { (/) } ) ) = F ) |
20 |
18 19
|
eqtrd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ F e. S ) -> ( ( X X. { (/) } ) oF +o F ) = F ) |