| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano1 |
⊢ ∅ ∈ ω |
| 2 |
|
fconst6g |
⊢ ( ∅ ∈ ω → ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ) |
| 3 |
1 2
|
mp1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ) |
| 4 |
|
simpl |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑋 ∈ On ) |
| 5 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ∅ ∈ ω ) |
| 6 |
4 5
|
fczfsuppd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) finSupp ∅ ) |
| 7 |
|
simpr |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑆 = dom ( ω CNF 𝑋 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ↔ ( 𝑋 × { ∅ } ) ∈ dom ( ω CNF 𝑋 ) ) ) |
| 9 |
|
eqid |
⊢ dom ( ω CNF 𝑋 ) = dom ( ω CNF 𝑋 ) |
| 10 |
|
omelon |
⊢ ω ∈ On |
| 11 |
10
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ω ∈ On ) |
| 12 |
9 11 4
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ dom ( ω CNF 𝑋 ) ↔ ( ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ∧ ( 𝑋 × { ∅ } ) finSupp ∅ ) ) ) |
| 13 |
8 12
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ∧ ( 𝑋 × { ∅ } ) finSupp ∅ ) ) ) |
| 14 |
3 6 13
|
mpbir2and |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) ∈ 𝑆 ) |
| 15 |
|
naddcnfcom |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) ) → ( ( 𝑋 × { ∅ } ) ∘f +o 𝐹 ) = ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ) |
| 16 |
15
|
ex |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝑋 × { ∅ } ) ∘f +o 𝐹 ) = ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ) ) |
| 17 |
14 16
|
mpand |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 → ( ( 𝑋 × { ∅ } ) ∘f +o 𝐹 ) = ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝑋 × { ∅ } ) ∘f +o 𝐹 ) = ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ) |
| 19 |
|
naddcnfid1 |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) = 𝐹 ) |
| 20 |
18 19
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝑋 × { ∅ } ) ∘f +o 𝐹 ) = 𝐹 ) |