| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑆 = dom ( ω CNF 𝑋 ) ) |
| 2 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom ( ω CNF 𝑋 ) ) ) |
| 3 |
|
eqid |
⊢ dom ( ω CNF 𝑋 ) = dom ( ω CNF 𝑋 ) |
| 4 |
|
omelon |
⊢ ω ∈ On |
| 5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ω ∈ On ) |
| 6 |
|
simpl |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑋 ∈ On ) |
| 7 |
3 5 6
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 8 |
2 7
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) → 𝐹 : 𝑋 ⟶ ω ) |
| 10 |
9
|
ffnd |
⊢ ( ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) → 𝐹 Fn 𝑋 ) |
| 11 |
8 10
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 → 𝐹 Fn 𝑋 ) ) |
| 12 |
|
simp1 |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) → 𝐹 ∈ 𝑆 ) |
| 13 |
11 12
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐹 Fn 𝑋 ) |
| 14 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom ( ω CNF 𝑋 ) ) ) |
| 15 |
3 5 6
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) ) ) |
| 16 |
14 15
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) ) ) |
| 17 |
|
simpl |
⊢ ( ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) → 𝐺 : 𝑋 ⟶ ω ) |
| 18 |
17
|
ffnd |
⊢ ( ( 𝐺 : 𝑋 ⟶ ω ∧ 𝐺 finSupp ∅ ) → 𝐺 Fn 𝑋 ) |
| 19 |
16 18
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 → 𝐺 Fn 𝑋 ) ) |
| 20 |
|
simp2 |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) → 𝐺 ∈ 𝑆 ) |
| 21 |
19 20
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐺 Fn 𝑋 ) |
| 22 |
6
|
adantr |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝑋 ∈ On ) |
| 23 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
| 24 |
13 21 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝑋 ) |
| 25 |
1
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐻 ∈ 𝑆 ↔ 𝐻 ∈ dom ( ω CNF 𝑋 ) ) ) |
| 26 |
3 5 6
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐻 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐻 : 𝑋 ⟶ ω ∧ 𝐻 finSupp ∅ ) ) ) |
| 27 |
25 26
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐻 ∈ 𝑆 ↔ ( 𝐻 : 𝑋 ⟶ ω ∧ 𝐻 finSupp ∅ ) ) ) |
| 28 |
|
simpl |
⊢ ( ( 𝐻 : 𝑋 ⟶ ω ∧ 𝐻 finSupp ∅ ) → 𝐻 : 𝑋 ⟶ ω ) |
| 29 |
28
|
ffnd |
⊢ ( ( 𝐻 : 𝑋 ⟶ ω ∧ 𝐻 finSupp ∅ ) → 𝐻 Fn 𝑋 ) |
| 30 |
27 29
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐻 ∈ 𝑆 → 𝐻 Fn 𝑋 ) ) |
| 31 |
|
simp3 |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) → 𝐻 ∈ 𝑆 ) |
| 32 |
30 31
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐻 Fn 𝑋 ) |
| 33 |
24 32 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) Fn 𝑋 ) |
| 34 |
21 32 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → ( 𝐺 ∘f +o 𝐻 ) Fn 𝑋 ) |
| 35 |
13 34 22 22 23
|
offn |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) Fn 𝑋 ) |
| 36 |
8 9
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 → 𝐹 : 𝑋 ⟶ ω ) ) |
| 37 |
36 12
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐹 : 𝑋 ⟶ ω ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ω ) |
| 39 |
16 17
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐺 ∈ 𝑆 → 𝐺 : 𝑋 ⟶ ω ) ) |
| 40 |
39 20
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐺 : 𝑋 ⟶ ω ) |
| 41 |
40
|
ffvelcdmda |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ω ) |
| 42 |
27 28
|
biimtrdi |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐻 ∈ 𝑆 → 𝐻 : 𝑋 ⟶ ω ) ) |
| 43 |
42 31
|
impel |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → 𝐻 : 𝑋 ⟶ ω ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐻 ‘ 𝑥 ) ∈ ω ) |
| 45 |
|
nnaass |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ω ∧ ( 𝐺 ‘ 𝑥 ) ∈ ω ∧ ( 𝐻 ‘ 𝑥 ) ∈ ω ) → ( ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) +o ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 46 |
38 41 44 45
|
syl3anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) +o ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 47 |
13
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 48 |
21
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
| 49 |
22
|
anim1i |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) |
| 50 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) ) |
| 51 |
47 48 49 50
|
syl21anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) ) |
| 52 |
51
|
oveq1d |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) +o ( 𝐺 ‘ 𝑥 ) ) +o ( 𝐻 ‘ 𝑥 ) ) ) |
| 53 |
32
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐻 Fn 𝑋 ) |
| 54 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝑋 ∧ 𝐻 Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) |
| 55 |
48 53 49 54
|
syl21anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 57 |
46 52 56
|
3eqtr4d |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) ) ) |
| 58 |
24
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝑋 ) |
| 59 |
|
fnfvof |
⊢ ( ( ( ( 𝐹 ∘f +o 𝐺 ) Fn 𝑋 ∧ 𝐻 Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑥 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) |
| 60 |
58 53 49 59
|
syl21anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑥 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑥 ) +o ( 𝐻 ‘ 𝑥 ) ) ) |
| 61 |
34
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ∘f +o 𝐻 ) Fn 𝑋 ) |
| 62 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝑋 ∧ ( 𝐺 ∘f +o 𝐻 ) Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) ) ) |
| 63 |
47 61 49 62
|
syl21anc |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑥 ) ) ) |
| 64 |
57 60 63
|
3eqtr4d |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑥 ) ) |
| 65 |
33 35 64
|
eqfnfvd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) = ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ) |