Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
eleq2d |
|
3 |
|
eqid |
|
4 |
|
omelon |
|
5 |
4
|
a1i |
|
6 |
|
simpl |
|
7 |
3 5 6
|
cantnfs |
|
8 |
2 7
|
bitrd |
|
9 |
|
simpl |
|
10 |
9
|
ffnd |
|
11 |
8 10
|
biimtrdi |
|
12 |
|
simp1 |
|
13 |
11 12
|
impel |
|
14 |
1
|
eleq2d |
|
15 |
3 5 6
|
cantnfs |
|
16 |
14 15
|
bitrd |
|
17 |
|
simpl |
|
18 |
17
|
ffnd |
|
19 |
16 18
|
biimtrdi |
|
20 |
|
simp2 |
|
21 |
19 20
|
impel |
|
22 |
6
|
adantr |
|
23 |
|
inidm |
|
24 |
13 21 22 22 23
|
offn |
|
25 |
1
|
eleq2d |
|
26 |
3 5 6
|
cantnfs |
|
27 |
25 26
|
bitrd |
|
28 |
|
simpl |
|
29 |
28
|
ffnd |
|
30 |
27 29
|
biimtrdi |
|
31 |
|
simp3 |
|
32 |
30 31
|
impel |
|
33 |
24 32 22 22 23
|
offn |
|
34 |
21 32 22 22 23
|
offn |
|
35 |
13 34 22 22 23
|
offn |
|
36 |
8 9
|
biimtrdi |
|
37 |
36 12
|
impel |
|
38 |
37
|
ffvelcdmda |
|
39 |
16 17
|
biimtrdi |
|
40 |
39 20
|
impel |
|
41 |
40
|
ffvelcdmda |
|
42 |
27 28
|
biimtrdi |
|
43 |
42 31
|
impel |
|
44 |
43
|
ffvelcdmda |
|
45 |
|
nnaass |
|
46 |
38 41 44 45
|
syl3anc |
|
47 |
13
|
adantr |
|
48 |
21
|
adantr |
|
49 |
22
|
anim1i |
|
50 |
|
fnfvof |
|
51 |
47 48 49 50
|
syl21anc |
|
52 |
51
|
oveq1d |
|
53 |
32
|
adantr |
|
54 |
|
fnfvof |
|
55 |
48 53 49 54
|
syl21anc |
|
56 |
55
|
oveq2d |
|
57 |
46 52 56
|
3eqtr4d |
|
58 |
24
|
adantr |
|
59 |
|
fnfvof |
|
60 |
58 53 49 59
|
syl21anc |
|
61 |
34
|
adantr |
|
62 |
|
fnfvof |
|
63 |
47 61 49 62
|
syl21anc |
|
64 |
57 60 63
|
3eqtr4d |
|
65 |
33 35 64
|
eqfnfvd |
|