Metamath Proof Explorer


Theorem naddcnfass

Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfass X On S = dom ω CNF X F S G S H S F + 𝑜 f G + 𝑜 f H = F + 𝑜 f G + 𝑜 f H

Proof

Step Hyp Ref Expression
1 simpr X On S = dom ω CNF X S = dom ω CNF X
2 1 eleq2d X On S = dom ω CNF X F S F dom ω CNF X
3 eqid dom ω CNF X = dom ω CNF X
4 omelon ω On
5 4 a1i X On S = dom ω CNF X ω On
6 simpl X On S = dom ω CNF X X On
7 3 5 6 cantnfs X On S = dom ω CNF X F dom ω CNF X F : X ω finSupp F
8 2 7 bitrd X On S = dom ω CNF X F S F : X ω finSupp F
9 simpl F : X ω finSupp F F : X ω
10 9 ffnd F : X ω finSupp F F Fn X
11 8 10 biimtrdi X On S = dom ω CNF X F S F Fn X
12 simp1 F S G S H S F S
13 11 12 impel X On S = dom ω CNF X F S G S H S F Fn X
14 1 eleq2d X On S = dom ω CNF X G S G dom ω CNF X
15 3 5 6 cantnfs X On S = dom ω CNF X G dom ω CNF X G : X ω finSupp G
16 14 15 bitrd X On S = dom ω CNF X G S G : X ω finSupp G
17 simpl G : X ω finSupp G G : X ω
18 17 ffnd G : X ω finSupp G G Fn X
19 16 18 biimtrdi X On S = dom ω CNF X G S G Fn X
20 simp2 F S G S H S G S
21 19 20 impel X On S = dom ω CNF X F S G S H S G Fn X
22 6 adantr X On S = dom ω CNF X F S G S H S X On
23 inidm X X = X
24 13 21 22 22 23 offn X On S = dom ω CNF X F S G S H S F + 𝑜 f G Fn X
25 1 eleq2d X On S = dom ω CNF X H S H dom ω CNF X
26 3 5 6 cantnfs X On S = dom ω CNF X H dom ω CNF X H : X ω finSupp H
27 25 26 bitrd X On S = dom ω CNF X H S H : X ω finSupp H
28 simpl H : X ω finSupp H H : X ω
29 28 ffnd H : X ω finSupp H H Fn X
30 27 29 biimtrdi X On S = dom ω CNF X H S H Fn X
31 simp3 F S G S H S H S
32 30 31 impel X On S = dom ω CNF X F S G S H S H Fn X
33 24 32 22 22 23 offn X On S = dom ω CNF X F S G S H S F + 𝑜 f G + 𝑜 f H Fn X
34 21 32 22 22 23 offn X On S = dom ω CNF X F S G S H S G + 𝑜 f H Fn X
35 13 34 22 22 23 offn X On S = dom ω CNF X F S G S H S F + 𝑜 f G + 𝑜 f H Fn X
36 8 9 biimtrdi X On S = dom ω CNF X F S F : X ω
37 36 12 impel X On S = dom ω CNF X F S G S H S F : X ω
38 37 ffvelcdmda X On S = dom ω CNF X F S G S H S x X F x ω
39 16 17 biimtrdi X On S = dom ω CNF X G S G : X ω
40 39 20 impel X On S = dom ω CNF X F S G S H S G : X ω
41 40 ffvelcdmda X On S = dom ω CNF X F S G S H S x X G x ω
42 27 28 biimtrdi X On S = dom ω CNF X H S H : X ω
43 42 31 impel X On S = dom ω CNF X F S G S H S H : X ω
44 43 ffvelcdmda X On S = dom ω CNF X F S G S H S x X H x ω
45 nnaass F x ω G x ω H x ω F x + 𝑜 G x + 𝑜 H x = F x + 𝑜 G x + 𝑜 H x
46 38 41 44 45 syl3anc X On S = dom ω CNF X F S G S H S x X F x + 𝑜 G x + 𝑜 H x = F x + 𝑜 G x + 𝑜 H x
47 13 adantr X On S = dom ω CNF X F S G S H S x X F Fn X
48 21 adantr X On S = dom ω CNF X F S G S H S x X G Fn X
49 22 anim1i X On S = dom ω CNF X F S G S H S x X X On x X
50 fnfvof F Fn X G Fn X X On x X F + 𝑜 f G x = F x + 𝑜 G x
51 47 48 49 50 syl21anc X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G x = F x + 𝑜 G x
52 51 oveq1d X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G x + 𝑜 H x = F x + 𝑜 G x + 𝑜 H x
53 32 adantr X On S = dom ω CNF X F S G S H S x X H Fn X
54 fnfvof G Fn X H Fn X X On x X G + 𝑜 f H x = G x + 𝑜 H x
55 48 53 49 54 syl21anc X On S = dom ω CNF X F S G S H S x X G + 𝑜 f H x = G x + 𝑜 H x
56 55 oveq2d X On S = dom ω CNF X F S G S H S x X F x + 𝑜 G + 𝑜 f H x = F x + 𝑜 G x + 𝑜 H x
57 46 52 56 3eqtr4d X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G x + 𝑜 H x = F x + 𝑜 G + 𝑜 f H x
58 24 adantr X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G Fn X
59 fnfvof F + 𝑜 f G Fn X H Fn X X On x X F + 𝑜 f G + 𝑜 f H x = F + 𝑜 f G x + 𝑜 H x
60 58 53 49 59 syl21anc X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G + 𝑜 f H x = F + 𝑜 f G x + 𝑜 H x
61 34 adantr X On S = dom ω CNF X F S G S H S x X G + 𝑜 f H Fn X
62 fnfvof F Fn X G + 𝑜 f H Fn X X On x X F + 𝑜 f G + 𝑜 f H x = F x + 𝑜 G + 𝑜 f H x
63 47 61 49 62 syl21anc X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G + 𝑜 f H x = F x + 𝑜 G + 𝑜 f H x
64 57 60 63 3eqtr4d X On S = dom ω CNF X F S G S H S x X F + 𝑜 f G + 𝑜 f H x = F + 𝑜 f G + 𝑜 f H x
65 33 35 64 eqfnfvd X On S = dom ω CNF X F S G S H S F + 𝑜 f G + 𝑜 f H = F + 𝑜 f G + 𝑜 f H