Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
2 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> F e. dom ( _om CNF X ) ) ) |
3 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
4 |
|
omelon |
|- _om e. On |
5 |
4
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
6 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
7 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. dom ( _om CNF X ) <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
8 |
2 7
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S <-> ( F : X --> _om /\ F finSupp (/) ) ) ) |
9 |
|
simpl |
|- ( ( F : X --> _om /\ F finSupp (/) ) -> F : X --> _om ) |
10 |
9
|
ffnd |
|- ( ( F : X --> _om /\ F finSupp (/) ) -> F Fn X ) |
11 |
8 10
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S -> F Fn X ) ) |
12 |
|
simp1 |
|- ( ( F e. S /\ G e. S /\ H e. S ) -> F e. S ) |
13 |
11 12
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> F Fn X ) |
14 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S <-> G e. dom ( _om CNF X ) ) ) |
15 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. dom ( _om CNF X ) <-> ( G : X --> _om /\ G finSupp (/) ) ) ) |
16 |
14 15
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S <-> ( G : X --> _om /\ G finSupp (/) ) ) ) |
17 |
|
simpl |
|- ( ( G : X --> _om /\ G finSupp (/) ) -> G : X --> _om ) |
18 |
17
|
ffnd |
|- ( ( G : X --> _om /\ G finSupp (/) ) -> G Fn X ) |
19 |
16 18
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S -> G Fn X ) ) |
20 |
|
simp2 |
|- ( ( F e. S /\ G e. S /\ H e. S ) -> G e. S ) |
21 |
19 20
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> G Fn X ) |
22 |
6
|
adantr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> X e. On ) |
23 |
|
inidm |
|- ( X i^i X ) = X |
24 |
13 21 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> ( F oF +o G ) Fn X ) |
25 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( H e. S <-> H e. dom ( _om CNF X ) ) ) |
26 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( H e. dom ( _om CNF X ) <-> ( H : X --> _om /\ H finSupp (/) ) ) ) |
27 |
25 26
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( H e. S <-> ( H : X --> _om /\ H finSupp (/) ) ) ) |
28 |
|
simpl |
|- ( ( H : X --> _om /\ H finSupp (/) ) -> H : X --> _om ) |
29 |
28
|
ffnd |
|- ( ( H : X --> _om /\ H finSupp (/) ) -> H Fn X ) |
30 |
27 29
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( H e. S -> H Fn X ) ) |
31 |
|
simp3 |
|- ( ( F e. S /\ G e. S /\ H e. S ) -> H e. S ) |
32 |
30 31
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> H Fn X ) |
33 |
24 32 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> ( ( F oF +o G ) oF +o H ) Fn X ) |
34 |
21 32 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> ( G oF +o H ) Fn X ) |
35 |
13 34 22 22 23
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> ( F oF +o ( G oF +o H ) ) Fn X ) |
36 |
8 9
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( F e. S -> F : X --> _om ) ) |
37 |
36 12
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> F : X --> _om ) |
38 |
37
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( F ` x ) e. _om ) |
39 |
16 17
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( G e. S -> G : X --> _om ) ) |
40 |
39 20
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> G : X --> _om ) |
41 |
40
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( G ` x ) e. _om ) |
42 |
27 28
|
syl6bi |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( H e. S -> H : X --> _om ) ) |
43 |
42 31
|
impel |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> H : X --> _om ) |
44 |
43
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( H ` x ) e. _om ) |
45 |
|
nnaass |
|- ( ( ( F ` x ) e. _om /\ ( G ` x ) e. _om /\ ( H ` x ) e. _om ) -> ( ( ( F ` x ) +o ( G ` x ) ) +o ( H ` x ) ) = ( ( F ` x ) +o ( ( G ` x ) +o ( H ` x ) ) ) ) |
46 |
38 41 44 45
|
syl3anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( ( F ` x ) +o ( G ` x ) ) +o ( H ` x ) ) = ( ( F ` x ) +o ( ( G ` x ) +o ( H ` x ) ) ) ) |
47 |
13
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> F Fn X ) |
48 |
21
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> G Fn X ) |
49 |
22
|
anim1i |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( X e. On /\ x e. X ) ) |
50 |
|
fnfvof |
|- ( ( ( F Fn X /\ G Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( F oF +o G ) ` x ) = ( ( F ` x ) +o ( G ` x ) ) ) |
51 |
47 48 49 50
|
syl21anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( F oF +o G ) ` x ) = ( ( F ` x ) +o ( G ` x ) ) ) |
52 |
51
|
oveq1d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( ( F oF +o G ) ` x ) +o ( H ` x ) ) = ( ( ( F ` x ) +o ( G ` x ) ) +o ( H ` x ) ) ) |
53 |
32
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> H Fn X ) |
54 |
|
fnfvof |
|- ( ( ( G Fn X /\ H Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( G oF +o H ) ` x ) = ( ( G ` x ) +o ( H ` x ) ) ) |
55 |
48 53 49 54
|
syl21anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( G oF +o H ) ` x ) = ( ( G ` x ) +o ( H ` x ) ) ) |
56 |
55
|
oveq2d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( F ` x ) +o ( ( G oF +o H ) ` x ) ) = ( ( F ` x ) +o ( ( G ` x ) +o ( H ` x ) ) ) ) |
57 |
46 52 56
|
3eqtr4d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( ( F oF +o G ) ` x ) +o ( H ` x ) ) = ( ( F ` x ) +o ( ( G oF +o H ) ` x ) ) ) |
58 |
24
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( F oF +o G ) Fn X ) |
59 |
|
fnfvof |
|- ( ( ( ( F oF +o G ) Fn X /\ H Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( ( F oF +o G ) oF +o H ) ` x ) = ( ( ( F oF +o G ) ` x ) +o ( H ` x ) ) ) |
60 |
58 53 49 59
|
syl21anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( ( F oF +o G ) oF +o H ) ` x ) = ( ( ( F oF +o G ) ` x ) +o ( H ` x ) ) ) |
61 |
34
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( G oF +o H ) Fn X ) |
62 |
|
fnfvof |
|- ( ( ( F Fn X /\ ( G oF +o H ) Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( F oF +o ( G oF +o H ) ) ` x ) = ( ( F ` x ) +o ( ( G oF +o H ) ` x ) ) ) |
63 |
47 61 49 62
|
syl21anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( F oF +o ( G oF +o H ) ) ` x ) = ( ( F ` x ) +o ( ( G oF +o H ) ` x ) ) ) |
64 |
57 60 63
|
3eqtr4d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) /\ x e. X ) -> ( ( ( F oF +o G ) oF +o H ) ` x ) = ( ( F oF +o ( G oF +o H ) ) ` x ) ) |
65 |
33 35 64
|
eqfnfvd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S /\ H e. S ) ) -> ( ( F oF +o G ) oF +o H ) = ( F oF +o ( G oF +o H ) ) ) |