Metamath Proof Explorer


Theorem onsucunifi

Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunifi
|- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> suc U. A = U_ x e. A suc x )

Proof

Step Hyp Ref Expression
1 ordunifi
 |-  ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U. A e. A )
2 suceq
 |-  ( x = U. A -> suc x = suc U. A )
3 2 ssiun2s
 |-  ( U. A e. A -> suc U. A C_ U_ x e. A suc x )
4 1 3 syl
 |-  ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> suc U. A C_ U_ x e. A suc x )
5 ssorduni
 |-  ( A C_ On -> Ord U. A )
6 ordsuci
 |-  ( Ord U. A -> Ord suc U. A )
7 5 6 syl
 |-  ( A C_ On -> Ord suc U. A )
8 onsucuni
 |-  ( A C_ On -> A C_ suc U. A )
9 8 sselda
 |-  ( ( A C_ On /\ x e. A ) -> x e. suc U. A )
10 ordsucss
 |-  ( Ord suc U. A -> ( x e. suc U. A -> suc x C_ suc U. A ) )
11 10 imp
 |-  ( ( Ord suc U. A /\ x e. suc U. A ) -> suc x C_ suc U. A )
12 7 9 11 syl2an2r
 |-  ( ( A C_ On /\ x e. A ) -> suc x C_ suc U. A )
13 12 iunssd
 |-  ( A C_ On -> U_ x e. A suc x C_ suc U. A )
14 13 3ad2ant1
 |-  ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U_ x e. A suc x C_ suc U. A )
15 4 14 eqssd
 |-  ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> suc U. A = U_ x e. A suc x )