Metamath Proof Explorer


Theorem onsucunifi

Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunifi ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → suc 𝐴 = 𝑥𝐴 suc 𝑥 )

Proof

Step Hyp Ref Expression
1 ordunifi ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
2 suceq ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 )
3 2 ssiun2s ( 𝐴𝐴 → suc 𝐴 𝑥𝐴 suc 𝑥 )
4 1 3 syl ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → suc 𝐴 𝑥𝐴 suc 𝑥 )
5 ssorduni ( 𝐴 ⊆ On → Ord 𝐴 )
6 ordsuci ( Ord 𝐴 → Ord suc 𝐴 )
7 5 6 syl ( 𝐴 ⊆ On → Ord suc 𝐴 )
8 onsucuni ( 𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴 )
9 8 sselda ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ suc 𝐴 )
10 ordsucss ( Ord suc 𝐴 → ( 𝑥 ∈ suc 𝐴 → suc 𝑥 ⊆ suc 𝐴 ) )
11 10 imp ( ( Ord suc 𝐴𝑥 ∈ suc 𝐴 ) → suc 𝑥 ⊆ suc 𝐴 )
12 7 9 11 syl2an2r ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → suc 𝑥 ⊆ suc 𝐴 )
13 12 iunssd ( 𝐴 ⊆ On → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴 )
14 13 3ad2ant1 ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴 )
15 4 14 eqssd ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → suc 𝐴 = 𝑥𝐴 suc 𝑥 )