| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordunifi | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∪  𝐴  ∈  𝐴 ) | 
						
							| 2 |  | suceq | ⊢ ( 𝑥  =  ∪  𝐴  →  suc  𝑥  =  suc  ∪  𝐴 ) | 
						
							| 3 | 2 | ssiun2s | ⊢ ( ∪  𝐴  ∈  𝐴  →  suc  ∪  𝐴  ⊆  ∪  𝑥  ∈  𝐴 suc  𝑥 ) | 
						
							| 4 | 1 3 | syl | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  suc  ∪  𝐴  ⊆  ∪  𝑥  ∈  𝐴 suc  𝑥 ) | 
						
							| 5 |  | ssorduni | ⊢ ( 𝐴  ⊆  On  →  Ord  ∪  𝐴 ) | 
						
							| 6 |  | ordsuci | ⊢ ( Ord  ∪  𝐴  →  Ord  suc  ∪  𝐴 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐴  ⊆  On  →  Ord  suc  ∪  𝐴 ) | 
						
							| 8 |  | onsucuni | ⊢ ( 𝐴  ⊆  On  →  𝐴  ⊆  suc  ∪  𝐴 ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  suc  ∪  𝐴 ) | 
						
							| 10 |  | ordsucss | ⊢ ( Ord  suc  ∪  𝐴  →  ( 𝑥  ∈  suc  ∪  𝐴  →  suc  𝑥  ⊆  suc  ∪  𝐴 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( Ord  suc  ∪  𝐴  ∧  𝑥  ∈  suc  ∪  𝐴 )  →  suc  𝑥  ⊆  suc  ∪  𝐴 ) | 
						
							| 12 | 7 9 11 | syl2an2r | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  suc  𝑥  ⊆  suc  ∪  𝐴 ) | 
						
							| 13 | 12 | iunssd | ⊢ ( 𝐴  ⊆  On  →  ∪  𝑥  ∈  𝐴 suc  𝑥  ⊆  suc  ∪  𝐴 ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∪  𝑥  ∈  𝐴 suc  𝑥  ⊆  suc  ∪  𝐴 ) | 
						
							| 15 | 4 14 | eqssd | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  suc  ∪  𝐴  =  ∪  𝑥  ∈  𝐴 suc  𝑥 ) |