Step |
Hyp |
Ref |
Expression |
1 |
|
ordunifi |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |
2 |
|
suceq |
⊢ ( 𝑥 = ∪ 𝐴 → suc 𝑥 = suc ∪ 𝐴 ) |
3 |
2
|
ssiun2s |
⊢ ( ∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥 ) |
4 |
1 3
|
syl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥 ) |
5 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
6 |
|
ordsuci |
⊢ ( Ord ∪ 𝐴 → Ord suc ∪ 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ⊆ On → Ord suc ∪ 𝐴 ) |
8 |
|
onsucuni |
⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) |
9 |
8
|
sselda |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ suc ∪ 𝐴 ) |
10 |
|
ordsucss |
⊢ ( Ord suc ∪ 𝐴 → ( 𝑥 ∈ suc ∪ 𝐴 → suc 𝑥 ⊆ suc ∪ 𝐴 ) ) |
11 |
10
|
imp |
⊢ ( ( Ord suc ∪ 𝐴 ∧ 𝑥 ∈ suc ∪ 𝐴 ) → suc 𝑥 ⊆ suc ∪ 𝐴 ) |
12 |
7 9 11
|
syl2an2r |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → suc 𝑥 ⊆ suc ∪ 𝐴 ) |
13 |
12
|
iunssd |
⊢ ( 𝐴 ⊆ On → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴 ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴 ) |
15 |
4 14
|
eqssd |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥 ) |