Metamath Proof Explorer


Theorem onsucunifi

Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunifi A On A Fin A suc A = x A suc x

Proof

Step Hyp Ref Expression
1 ordunifi A On A Fin A A A
2 suceq x = A suc x = suc A
3 2 ssiun2s A A suc A x A suc x
4 1 3 syl A On A Fin A suc A x A suc x
5 ssorduni A On Ord A
6 ordsuci Ord A Ord suc A
7 5 6 syl A On Ord suc A
8 onsucuni A On A suc A
9 8 sselda A On x A x suc A
10 ordsucss Ord suc A x suc A suc x suc A
11 10 imp Ord suc A x suc A suc x suc A
12 7 9 11 syl2an2r A On x A suc x suc A
13 12 iunssd A On x A suc x suc A
14 13 3ad2ant1 A On A Fin A x A suc x suc A
15 4 14 eqssd A On A Fin A suc A = x A suc x