Metamath Proof Explorer


Theorem naddcnfid2

Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfid2 X On S = dom ω CNF X F S X × + 𝑜 f F = F

Proof

Step Hyp Ref Expression
1 peano1 ω
2 fconst6g ω X × : X ω
3 1 2 mp1i X On S = dom ω CNF X X × : X ω
4 simpl X On S = dom ω CNF X X On
5 1 a1i X On S = dom ω CNF X ω
6 4 5 fczfsuppd X On S = dom ω CNF X finSupp X ×
7 simpr X On S = dom ω CNF X S = dom ω CNF X
8 7 eleq2d X On S = dom ω CNF X X × S X × dom ω CNF X
9 eqid dom ω CNF X = dom ω CNF X
10 omelon ω On
11 10 a1i X On S = dom ω CNF X ω On
12 9 11 4 cantnfs X On S = dom ω CNF X X × dom ω CNF X X × : X ω finSupp X ×
13 8 12 bitrd X On S = dom ω CNF X X × S X × : X ω finSupp X ×
14 3 6 13 mpbir2and X On S = dom ω CNF X X × S
15 naddcnfcom X On S = dom ω CNF X X × S F S X × + 𝑜 f F = F + 𝑜 f X ×
16 15 ex X On S = dom ω CNF X X × S F S X × + 𝑜 f F = F + 𝑜 f X ×
17 14 16 mpand X On S = dom ω CNF X F S X × + 𝑜 f F = F + 𝑜 f X ×
18 17 imp X On S = dom ω CNF X F S X × + 𝑜 f F = F + 𝑜 f X ×
19 naddcnfid1 X On S = dom ω CNF X F S F + 𝑜 f X × = F
20 18 19 eqtrd X On S = dom ω CNF X F S X × + 𝑜 f F = F